SWITCHING PROBLEM ON A GRAPH

I. Chulakov^{1,2}, A. Pilipenko^{1,3}

¹Institute of Mathematics of NAS of Ukraine ²Dragomanov Ukrainian State University, Kyiv, Ukraine ³Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine *igorchzpua@gmail.com*, *pilipenko.ay@gmail.com*

A. Skorokhod in 1961 formulated the reflection problem in [1], which subsequently proved to be an effective method for constructing reflected diffusions. Based on this reflection problem, a mapping was built that assigns to a function the solution of Skorokhod's reflection problem for that function. This mapping turned out to be useful for solving various problems in queueing theory (see, e.g. [2]). Skorokhod's reflection problem has been generalized by different authors. In particular, A. Pilipenko in [3] posed the problem of jump-like reflection, and this work made it possible to construct Brownian motion with jump-like reflection [4].

The aim of our work is to construct a similar mapping for natural gluing of functions on a graph. We investigate the properties of this mapping and apply it to the study of random walks, using the continuous mapping theorem and Donsker's invariance principle.

Definition 1. Let $m \in \mathbb{N}$. We say that the function \vec{X} is a solution to the graph switching problem for function \vec{W} and compensating function \vec{H} if for each $i \in \overline{1,m}$ the function $X_i(t)$ from the vector $\vec{X}(t) = (X_1(t), X_2(t), ..., X_m(t))$ can be represented as

$$X_i(t) = W_i(T_i(t)) + H_i(\widetilde{T}(t))$$

and there is a sequence $\{a_k, b_k \mid k \geq 0\} \subset \mathbb{R}_+$ such that this sequence and functions $T_i \colon \mathbb{R}_+ \mapsto \mathbb{R}_+$ satisfy the following conditions:

- 1. $0 = a_0 \le b_0 \le a_1 \le b_1 \le \dots \le a_n \le b_n \le \dots \le +\infty; \ a_k \to +\infty.$
- 2. \widetilde{T} is a non-decreasing right-continuous function and $\widetilde{T}(0) = 0$.
- 3. For all $i \in \overline{1,m}$ the function T_i is a piecewise linear function that has derivative at each point of \mathbb{R}_+ except maybe $\{a_k, b_k \mid k \geq 0\}$.
- 4. For all $t \in \mathbb{R}_+ \setminus \{a_k, b_k \mid k \ge 0\}$ and for all $i \in \overline{1, m}$ we have $T_i'(t) \in \{0, 1\}$ and $T_i(0) = 0$.
- 5. For all $t \in A = \bigcup_{k=0}^{\infty} (a_k, b_k)$ holds $\sum_{i=1}^{m} T'_i(t) = 1$.
- 6. $\int_0^\infty \mathbb{I}_A(t) \, d\widetilde{T}(t) = 0.$
- 7. For $B = \bigcup_{k=0}^{\infty} (b_k, a_{k+1})$ for all $i \in \overline{1, m}$ holds $\int_0^{\infty} \mathbb{I}_B(t) dT_i(t) = 0$.

We denote that \vec{X} is a solution of the graph switching problem for functions \vec{W} , \vec{H} in the following way: $\vec{X} \in \mathcal{R}(\vec{W}, \vec{H})$.

Theorem 1. For $n \in \mathbb{N}$ let $\vec{X}^{(n)}$ be a function from $\mathcal{R}(\vec{W}^{(n)}, \vec{H}^{(n)})$ and let the following conditions hold:

International Conference of Young Mathematicians The Institute of Mathematics of the National Academy of Sciences of Ukraine June 4–6, 2025, Kyiv, Ukraine

- 1. The sequence of functions $\{\vec{W}^{(n)}\}_{n\geq 1}$ converges locally uniformly to the function \vec{W} from $C(\mathbb{R}_+, \mathbb{R}^m)$ on \mathbb{R}_+ as $n \to \infty$.
- 2. The sequence of functions $\{\vec{H}^{(n)}\}_{n\geq 1}$ converges locally uniformly to the function \vec{H} from $C(\mathbb{R}_+, \mathbb{R}^m)$ on \mathbb{R}_+ as $n \to \infty$.
- 3. For all T > 0 and $\forall i \in \overline{1, m}$ we have $\liminf_{n \to \infty} \inf_{t \in [0,T]} X_i^{(n)}(t) \ge 0$.
- 4. For all T > 0 and $\forall i \in \overline{1, m}$ we have $\limsup_{n \to \infty} \sup_{t \in [0,T] \cap \overline{B^{(n)}}} X_i^{(n)}(t) \le 0$.
- 5. The functions $H^{(n)}(t) = \sum_{i=1}^m H_i^{(n)}(t)$ converge locally uniformly to the function t on \mathbb{R}_+ as $n \to \infty$.
- 6. The sequence of functions $T^{(n)}(t) = \sum_{i=1}^{m} T_i^{(n)}(t)$ converges locally uniformly to the function t on \mathbb{R}_+ as $n \to \infty$.

Then there exists a subsequence n_k and functions $T_i : \mathbb{R}_+ \mapsto \mathbb{R}$, $i \in \overline{1,m}$ and $\widetilde{T} : \mathbb{R}_+ \mapsto \mathbb{R}$ such that for all $i \in \overline{1,m}$ the functions $X_i^{(n_k)}$ converge locally uniformly to the function $X_i(\cdot) = W_i(T_i(\cdot)) + H_i(\widetilde{T}(\cdot))$ as $k \to \infty$ and for all $i \in \overline{1,m}$ the functions $T_i^{(n_k)}$ converge to T_i and the functions $\widetilde{T}^{(n_k)}$ converge to \widetilde{T} locally uniformly. Moreover,

$$\begin{cases} \sum_{i=1}^{m} T_i(t) = t, \\ l_i(T_i) = H_i(\widetilde{T}(t)), \quad i = \overline{1, m}. \end{cases}$$

- 1. Skorokhod A. Stochastic equations for diffusion processes in a bounded region. Theory of Probability and Its Applications, 1961, 6, no. 3, 264–274.
- 2. Asmussen S. Applied probability and queues. New York: Springer, 2003, vol. 2, 439 p.
- 3. Pilipenko A. On the Skorokhod mapping for equations with reflection and possible jump-like exit from a boundary. Ukrainian Mathematical Journal, 2012, 63, no. 9, 1415–1432.
- 4. Pilipenko A., Prykhodko Yu. Limit behavior of a simple random walk with non-integrable jump from a barrier. Theory of Stochastic Processes, 2014, 19, no. 1, 52-61.