ON INTERPOLATION OF DISTRIBUTION SPACES ASSOCIATED WITH ELLIPTIC OPERATORS

I. S. Chepurukhina

Institute of Mathematics of the NAS of Ukraine, Kyiv, Ukraine *chepurukhina@gmail.com*

We study interpolation properties of complex distribution spaces X(A, Y) given over a bounded Lipschitz domain Ω and associated with an elliptic differential operator A with C^{∞} coefficients on $\overline{\Omega}$. If X and Y are quasi-Banach distribution spaces over Ω , then the space X(A, Y) consists of all distributions $u \in X$ such that $Au \in Y$ and is endowed with the graph quasi-norm ||u, X|| + ||Au, Y||. We suppose that X is either the Besov space $B_{p,q}^s(\Omega)$ or Triebel– Lizorkin space $F_{p,q}^s(\Omega)$ with $s \in \mathbb{R}$, $0 (<math>p \neq \infty$ for F-spaces), and $0 < q \leq \infty$. Let $\mathcal{U}(\Omega)$ stand for the class of all these spaces. They are Banach iff $p \geq 1$ and $q \geq 1$. If dim $\Omega = 2$, we suppose in addition that A is properly elliptic. Let 2ℓ be the even order of A.

We find sufficient conditions for Y under which the interpolation between the spaces X(A, Y)preserves their structure. Let $\mathfrak{F}[\cdot, \cdot]$ be an arbitrary interpolation functor defined on the category of all interpolation pairs of quasi-Banach spaces (resp., Banach spaces). We say that a quasi-Banach space $Y \hookrightarrow \mathcal{D}'(\Omega)$ is admissible if a certain space from $\mathcal{U}(\Omega)$ is continuously embedded in Y. As usual, $\mathcal{D}'(\Omega)$ is the linear topological space of all distributions on Ω .

Theorem 1. Let X_0 and X_1 be quasi-Banach (resp., Banach) spaces from the class $\mathcal{U}(\Omega)$, and let Y_0 and Y_1 be admissible quasi-Banach (resp., Banach) spaces embedded continuously in $\mathcal{D}'(\Omega)$. Given $j \in \{0,1\}$, we put $Z_j := B_{p,q}^{s-2\ell}(\Omega)$ if $X_j := B_{p,q}^s(\Omega)$ and put $Z_j := F_{p,q}^{s-2\ell}(\Omega)$ if $X_j := F_{p,q}^s(\Omega)$ (of course, s, p, and q depends on j). Then, up to equivalence of quasi-norms,

$$\mathfrak{F}[X_0(A, Y_0), X_1(A, Y_1)] = (\mathfrak{F}[X_0, X_1])(A, \mathfrak{F}[Y_0 \cap Z_0, Y_1 \cap Z_1]).$$

Among applications of Theorem 1 to various interpolation functors, we focus our attention on \pm -interpolation functor $\mathfrak{F}[X_0, X_1] := \langle X_0, X_1, \theta \rangle$ with the parameter $\theta \in (0, 1)$. This functor is applicable to every interpolation pair of quasi-Banach spaces and retains the class of Triebel– Lizorkin spaces (in contrast to the real interpolation).

Theorem 2. Let $E, G \in \{B, F\}$, and let $s_j, \alpha_j \in \mathbb{R}$ and $p_j, q_j, \beta_j, \gamma_j \in (0, \infty]$ for each $j \in \{0, 1\}$. Suppose that $p_0 < \infty$ and $p_1 < \infty$ if E = F, and suppose that $\beta_0 < \infty$ and $\beta_1 < \infty$ if G = F. Assume also that $G^{\alpha_j}_{\beta_j,\gamma_j}(\Omega) \subset E^{s_j-2\ell}_{p_j,q_j}(\Omega)$ whenever $j \in \{0, 1\}$. Define the parameters s, α, p, q, β , and γ by formulas $s := (1 - \theta)s_0 + \theta s_1, \alpha := (1 - \theta)\alpha_0 + \theta \alpha_1$, and

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}, \quad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}, \quad \frac{1}{\beta} = \frac{1-\theta}{\beta_0} + \frac{\theta}{\beta_1}, \quad \frac{1}{\gamma} = \frac{1-\theta}{\gamma_0} + \frac{\theta}{\gamma_1}$$

Then, up to equivalence of quasi-norms,

$$\langle E_{p_0,q_0}^{s_0}(A, G_{\beta_0,\gamma_0}^{\alpha_0}, \Omega), E_{p_1,q_1}^{s_1}(A, G_{\beta_1,\gamma_1}^{\alpha_1}, \Omega), \theta \rangle = E_{p,q}^{s}(A, G_{\beta,\gamma}^{\alpha}, \Omega).$$

Here, $E(A, G, \Omega)$ means the above-indicated space of all $u \in E(\Omega)$ such that $Au \in G(\Omega)$, where $E(\Omega)$ and $G(\Omega)$ symbolize Besov or Triebel–Lizorkin spaces over Ω .

These results have applications to elliptic boundary-value problems with rough data and are obtained together with A. A. Murach [1].

1. Chepurukhina I., Murach A. Distribution spaces associated with elliptic operators. arXiv preprint, 2024, arxiv:2406.08150, 42 p. https://arxiv.org/pdf/2406.08150