ENTIRE SLICE REGULAR FUNCTIONS HAVING BOUNDED INDEX OF QUATERNIONIC VARIABLE

V. P. Baksa¹, A. Bandura², O. Skaskiv³

¹Department of Mathematics, Lviv Politechnic National University, Lviv, Ukraine.

²Department of Physics and Mathematics, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

³Department of Function Theory and Functional Analysis, Ivan Franko National University of Lviv, Lviv, Ukraine

 $vitalinabaksa@gmail.com,\ and riykopanytsia@gmail.com,\ olskask@gmail.com$

We will use notations from [1] andc [2]. Let \mathbb{H} be the skew field of quaternions which is defined as $\mathbb{H} = \{g = x_0 + ix_1 + jx_2 + kx_3 : x_0, x_1, x_2, x_3 \in \mathbb{R}\}$, where the imaginary units i, j, ksatisfy $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i, ki = -ik = j. It is a noncommutative field. We define the Euclidean norm on $\mathbb{H} : |q| = \sqrt{x_0^2 + x_1^2 + x_2^2 + x_3^2}$, real part is $Re q = x_0$, imaginary part is $Im q = ix_1 + jx_2 + kx_3$. The symbol \mathbb{S} denotes the unit sphere of purely imaginary quaternions, i.e., $\mathbb{S} = \{q = ix_1 + jx_2 + kx_3 : x_1^2 + x_2^2 + x_3^2 = 1\}$. One should observe that if $I \in \mathbb{S}$, then $I^2 = -1$. Given this, the elements of \mathbb{S} are also called imaginary units. For any fixed $I \in \mathbb{S}$ we define $\mathbb{C}_I := \{x + Iy : x, y \in \mathbb{R}\}$. It is easy to check that \mathbb{C}_I can be identified with a complex plane, moreover $\mathbb{H} = \bigcup_{I \in \mathbb{S}} \mathbb{C}_I$. The real axis belongs to \mathbb{C}_I for every $I \in \mathbb{S}$ and thus a real quaternion can be associated with any imaginary unit I. Any nonreal quaternion $q = x_0 + ix_1 + jx_2 + kx_3$ is uniquely associated to the element $I_q \in \mathbb{S}$ defined by

$$I_q := \frac{ix_1 + jx_2 + kx_3}{|ix_1 + jx_2 + kx_3|}.$$

It is obvious that q belongs to the complex plane \mathbb{C}_{I_q} .

Let $f: \mathbb{H} \to \mathbb{H}$ be real differentiable. The function f is said to be (left) entire slice regular or (left) entire slice hyperholomorphic if for every $I \in \mathbb{S}$, its restriction f_I to the complex plane $\mathbb{C}_I = \mathbb{R} + I\mathbb{R}$ passing through origin and containing I and 1 satisfies $\bar{\partial}_I f(x + Iy) :=$ $\frac{1}{2} \left(\frac{\partial}{\partial x} + I \frac{\partial}{\partial y} \right) f_I(x+Iy) = 0$ on \mathbb{C}_I . The class of (left) slice regular functions on \mathbb{H} will be denoted by $\mathcal{R}(\mathbb{H})$. Analogously, a function f is said to be right entire slice regular in \mathbb{H} if $(f_I \bar{\partial}_I)(x+Iy) :=$ $\frac{1}{2} \left(\frac{\partial}{\partial x} f_I(x + Iy) + \frac{\partial}{\partial y} f_I(x + Iy) I \right) = 0$ on \mathbb{C}_I . Let $f \in \mathcal{R}(\mathbb{H})$. The so-called left I-derivative of f at a point q = x + Iy is defined by $\partial_I f(x + iy) := \frac{1}{2} (\frac{\partial}{\partial x} f_I(x + Iy) - I \frac{\partial}{\partial y} f_I(x + Iy))$ and the right I-derivative of f at q = x + Iy is defined by $\partial_I f(x + iy) := \frac{1}{2} (\frac{\partial}{\partial x} f_I(x + Iy) - \frac{\partial}{\partial y} f_I(x + Iy)I)$. Let us now introduce another suitable notion of derivative. The slice derivative $\partial_s f$ of f, is defined by:

$$\partial_s(f)(q) = \begin{cases} \partial_I(f)(q), \text{ if } q = x + Iy, y \neq 0, \\ \frac{\partial f}{\partial x}(x), \text{ if } q = x \in \mathbb{R}. \end{cases}$$

We will often write f'(q) instead of $\partial_s f(q)$. The k-th derivative of $f \in \mathcal{R}(\mathbb{H})$ is defined recursively as $f^{(k)}(q) = (f^{(k-1)}(q))'$. It is important to note that if f(q) is a slice regular function then also f'(q) is a slice regular function.

Let $I, J \in \mathbb{S}$ be such that I and J are orthogonal vectors, so that I, J, IJ = K is a basis of \mathbb{H} and write the restriction $f_I(x + Iy) = f(x + Iy)$ of f to the complex plane \mathbb{C}_I as $f = f_0 + If_1 + Jf_2 + Kf_3$, where f_0, \ldots, f_3 are \mathbb{R} -valued. In alternative, it can also be written as f = F + GJ, where $f_0 + If_1 = F$, and $f_2 + If_3 = G$ are C_I -valued.

http://www.imath.kiev.ua/~young/youngconf2025

A function $f \in \mathcal{R}(\mathbb{H})$ is called a function of *bounded index*, if there exists $m_0 \in \mathbb{Z}_+$ such that for every $m \in \mathbb{Z}_+$ and every $q \in \mathbb{H}$ the following inequality is valid

$$\frac{|f^{(m)}(q)|}{m!} \le \max\left\{\frac{|f^{(k)}(q)|}{k!} : 0 \le k \le m_0\right\}.$$

The least such integer m_0 is called the *index of the entire slice regular function* f and is denoted by $N(f) = m_0$.

Theorem 1. A function $f \in \mathcal{R}(\mathbb{H})$ is of bounded index if and only if for every $\eta > 0$ there exist $n_0 = n_0(\eta) \in \mathbb{Z}_+$ and $P_1 = P_1(\eta) \ge 1$ such that for any $I \in \mathbb{S}$ and for every $x_0 \in \mathbb{R}$, $y_0 \in \mathbb{R}_+$ (or, equivalently, for any $q = x_0 + Iy_0 \in \mathbb{H}$) there exists $k_0 = k_0(q) = k_0(x_0, y_0, I) \in \mathbb{Z}_+$ with $0 \le k_0 \le n_0$ and the following inequality holds

$$\max\{|f_I^{(k_0)}(x+Iy)|: \sqrt{(x-x_0)^2 + (y-y_0)^2} \le \eta\} \le P_1|f_I^{(k_0)}(x_0+Iy_0)|.$$

These results will be published soon in [2]. More partial results for the Fueter regular function with boundex index were obtained in [1].

- Baksa V. P., Bandura A. I. On an attempt to introduce a notion of bounded index for the Fueter regular functions of the quaternionic variable. Matematychni Studii, 2025, 60, 2, 191–200. https://doi.org/10.30970/ms.60.2.191-200
- 2. Baksa V. P., Bandura A. I., Skaskiv O. B. Entire slice regular functions having bounded index of quaternionic variable. Ukrainian Mathematical Journal, 2025, (accepted, in print).