OSTROWSKI-TYPE INEQUALITIES IN ABSTRACT DISTANCE SPACES

V. F. Babenko¹, V. V. Babenko², O. V. Kovalenko¹

¹ Oles Honchar Dnipro National University, Dnipro, Ukraine

² Drake University, Des Moines, USA

 $babenko.vladislav@gmail.com,\ vira.babenko@drake.edu,\ olegkovalenko90@gmail.com$

Estimates for the deviation between the value of an operator Λ at a function f from some class \mathfrak{M} and the value of Λ at some depending on f constant function from \mathfrak{M} play an important role in approximation theory and numeric analysis. For example, estimates for the deviation of a value of a function $f \in \mathfrak{M}$ at some point from its mean value is of this kind. One of the first among such sharp estimates (where $\Lambda f = \frac{1}{2} \int_{-1}^{1} f(t) dt$) was obtained by Ostrowski [1]:

Theorem 1. Let $f: [-1,1] \to \mathbb{R}$ be a differentiable function and let for all $t \in (-1,1)$, $|f'(t)| \le 1$. Then for all $x \in [-1,1]$ the following inequality holds

$$\left| \frac{1}{2} \int_{-1}^{1} f(t)dt - f(x) \right| \le \frac{1+x^2}{2}.$$

The inequality is sharp in the sense that for each fixed $x \in [-1, 1]$, the upper bound $\frac{1+x^2}{2}$ cannot be reduced.

The notion of a distance (in particular, a metric) plays an important role in many branches of mathematics. A set M with a reflexive, antisymmetric and transitive relation \leq is called partially ordered. Let X be an arbitrary set and M be a partially ordered set that has a smallest element, which we denote by θ (i.e., $\theta \leq m$ for any $m \in M$). A function $h_X \colon X \times X \to M$ is called an M-distance in X, if for arbitrary $x, y \in X$, $h_X(x, x) = \theta$ and $h_X(x, y) = h_X(y, x)$. The pair (X, h_X) will be called an M-distance space. Speaking of a partially ordered set M, we assume that some M-distance h_M is defined in M. We say that an M-distance h_X in X agrees with an M-distance h_M in M, if

$$h_M(h_X(x,x_1),h_X(x,x_2)) \le h_X(x_1,x_2) \,\forall x,x_1,x_2 \in X.$$

Note that this inequality holds (and is equivalent to the triangle inequality) if $M = \mathbb{R}_+$ with the usual metric, and (X, h_X) is a pseudo metric space. An M-distance h_X on a set X will be called an M-pseudo metric, if it agrees with M-distance h_M . In this case the pair (X, h_X) will be called an M-pseudo metric space. We note that generally speaking an M-metric h_X need not agree with h_M . Moreover, an M-metric h_M does not necessarily agree with itself.

The class H(X,Y) of mappings $f: X \to Y$ that satisfy the Lipschitz condition can be defined in a standard way, if distances h_X and h_Y are somehow defined in X and Y:

$$H(X,Y) = \{f : X \to Y : h_Y(f(x_1), f(x_2)) \le h_X(x_1, x_2) \ \forall x_1, x_2 \in X\}.$$

For an M-distance space X, an operator $\lambda \colon H(X,M) \to M$ will be called monotone, if for arbitrary $u,v \in H(X,M)$

$$(\forall x \in X \ u(x) \leq v(x)) \implies (\lambda(u) \leq \lambda(v)).$$

Let T, Y be M-distance spaces, X be an M-pseudo metric space, and $t \in T$ be fixed. We say that an operator $\Lambda \colon H(T,X) \to Y$ and a monotone operator $\lambda \colon H(T,M) \to M$ agree, if for all $f \in H(T,X)$

$$h_Y(\Lambda f(\cdot), \Lambda f(t)) \le \lambda(h_X(f(\cdot), f(t))).$$

Here and below $\Lambda f(t)$ means the value of the operator Λ on the constant function $\tau \mapsto f(t)$, $\tau \in T$ (the same notation will be used for other operators whose arguments are functions).

Our main result (see [2]) is the following Ostrowski-type inequality.

Theorem 2. Let (T, h_T) and (X, h_X) be M-pseudo metric spaces, (Y, h_Y) be an M-distance space, and $t \in T$ be fixed. Assume that an operator $\Lambda \colon H(T, X) \to Y$ and a monotone operator $\lambda \colon H(T, M) \to M$ agree. Then for arbitrary function $f \in H(T, X)$ the following Ostrowski-type inequality holds:

$$h_Y(\Lambda f(\cdot), \Lambda f(t)) \le \lambda(h_T(\cdot, t)).$$
 (1)

If $\lambda(\theta) = \theta$, and there exists an operator $\phi_X \colon H(T,M) \to H(T,X)$ and $\phi_Y \in H(M,Y)$ with the property $h_Y(\phi_Y(m), \phi_Y(\theta)) = m$, if $m = \lambda(h_T(\cdot, t))$, such that the diagram

$$H(T,X) \xrightarrow{\Lambda} Y$$

$$\downarrow^{\phi_X} \qquad \qquad \uparrow^{\phi_Y}$$

$$H(T,M) \xrightarrow{\lambda} M$$

is commutative i.e., $\Lambda \circ \phi_X = \phi_Y \circ \lambda$, then inequality (1) is sharp and becomes equality on the function

$$f_t(\cdot) = \phi_X(h_T(\cdot, t)).$$

- 1. Ostrowski A. Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert. Comment. Math. Hel., 1938, 10, 226-227.
- 2. Babenko V. F., Babenko V. V., Kovalenko O. V. Ostrowski-type inequalities in abstract distance spaces. Res. Math., 2024, 32, No. 2, 9-20. doi:10.15421/242416.