GRAPHS WITH ODD DISTANCES BETWEEN CUT AND NON-CUT VERTICES

K. O. Antoshyna^{1,2}, S. O. Kozerenko²

¹Institute of Mathematics NAS of Ukraine, Kyiv, Ukraine ²Kyiv School of Economics, Kyiv, Ukraine kantoshyna@imath.kiev.ua, kozerenkoserqiy@ukr.net

A vertex u in a finite connected graph G is called a cut vertex if its removal results in a disconnected graph G - u. A graph is biconnected provided it does not contain cut vertices. In [1], connected graphs with even distances between their non-cut vertices (NCE-graphs) and graphs with these odd distances (NCO-graphs) were considered.

Here we consider graphs with parity conditions on distances between pairs of vertices, where one is a cut vertex and the other is a non-cut vertex. At first, we observe that biconnected graphs are precisely the graphs in which the distances between cut and non-cut vertices are even. Indeed, if G has at least one cut vertex u, there would be a non-cut vertex v adjacent to u (as G is connected). The situation becomes more intriguing when considering graphs with these distances being odd.

A graph is called a CNCO-graph if it has odd distances between pairs of its vertices with different cutness. Clearly, biconnected graphs are also CNCO-graphs. A graph is called a CE-graph if it has even distances between cut vertices.

Theorem 1. Let G be a connected, but not a biconnected graph. Consider the following three statements:

- 1. G is a CE-graph and an NCE-graph;
- 2. G is a CNCO-graph;
- 3. G is a CE-graph having dominating set of its cut vertices.

Then the next implications hold: $1 \Rightarrow 2 \Rightarrow 3$.

If we restrict ourselves to the class of bipartite graphs, then the three statements from Theorem 1 become equivalent.

Corollary 1. Let G be a connected, but not a biconnected bipartite graph. Then the following statements are equivalent:

- 1. G is a CE-graph and an NCE-graph;
- 2. G is a CNCO-graph;
- 3. G is a CE-graph having dominating set of its cut vertices.

It is also easy to characterize CNCO-graphs with a unique cut vertex.

Corollary 2. A graph G is a CNCO-graph with a unique cut vertex if and only if $G \simeq K_1 + H$ for a disconnected graph H (here + denotes the graph join operation).

A signed graph is a pair (G, σ) , where G is a graph, and σ is a sign function that assigns one of two signs $\sigma(e) \in \{+, -\}$ to each edge e of the graph G (see [5]). Edges e with $\sigma(e) = +$ are called positive, and with $\sigma(e) = -$ are called negative.

For a graph G, it is natural to consider a sign function $\sigma_c : E(G) \to \{+, -\}$, where $\sigma_c(uv) = +$ if u and v have the same cutness (are both cut or non-cut vertices), and $\sigma_c(uv) = -$ provided u and v have different cutness. We refer to the value $\sigma_c(e)$ as to the cut-sign of an edge e. It is clear that the resulting signed graph is balanced (see [3]): each cycle in it has an even number of negative edges. In such a context, CNCO graphs can be characterized as follows.

Theorem 2. Let G be a connected graph. Then G is a CNCO-graph if and only if every induced P_3 in G has the edges with the same cut-sign.

It is also can be observed that in a CNCO-graph, the set of cut vertices must be independent. However, we can still unveil some of the structure of this set using the following construction. For a connected graph G, its 2-distance graph is the graph $D_2(G)$ having the same vertex set $V(D_2(G)) = V(G)$ and the edge set $E(D_2(G)) = \{uv : d_G(u, v) = 2\}$ (here $d_G(u, v)$ denotes the usual graph distance between u and v). We note that the paper [4] contains the more general definition of k-distance graphs, and the paper [2] presents a characterization of 2-distance graphs.

One can easily show that the set of cut vertices in a CNCO-graph G induces a connected subgraph in its 2-distance graph. Indeed, assume $u, v \in V(G)$ are two cut vertices in G. Then the distance $d_G(u, v)$ must be even. If $d_G(u, v) = 2$, then u and v are adjacent in $D_2(G)$. Otherwise, let $d_G(u, v) \geq 4$. Fix a shortest path $u - x_1 - x_2 - \cdots - v$. As $d_G(u, x_2) = 2$, the vertex x_2 is also a cut vertex. Thus, any two cut vertices from G are joined by a path in $D_2(G)$.

The next result shows that there are no other restrictions on the structure of the subgraph induced by the cut vertices of a CNCO-graph G in its 2-distance graph $D_2(G)$.

Theorem 3. For any connected graph H, there exists a CNCO-graph G such that the subgraph of $D_2(G)$ induced by the cut vertices in G, is isomorphic to H.

Acknowledgements

The authors are deeply grateful to Armed Forces of Ukraine for their unwavering daily heroism in safeguarding Ukraine. Kateryna Antoshyna was supported by a grant from the Simons Foundation (1030291, K.O.A.).

- 1. Antoshyna K., Kozerenko S. Graphs with odd and even distances between non-cut vertices. Opuscula Math., 2025, 45, No. 1, 5–25.
- 2. Ching R. P., Garces I. J. L. Characterizing 2-distance graphs. Asian-Eur. J. Math., 2019, 12, No. 1, 1950006 (10 pages).
- 3. Harary F. On the notion of balance of a signed graph. Michigan Math. J., 1953/1954, 2, No. 2, 143-146.
- 4. Harary F., Hoede C. and Kadlecek D. Graph-valued functions related to step graphs. J. Comb. Inf. Syst. Sci., 1982, 7, 231–246.
- 5. Zaslavsky T. Signed graphs. Discrete Appl. Math, 1982, 4, 47–74.