Characterization of invertible operators in $\delta(\mathcal{H})$ VIA DUGGAL TRANSFORM

S. Zid^{1}, S. Menkad ${ }^{2}$
${ }^{1}$ Department of mathematics, Faculty of Mathematics and Informatics, University of Batna 2, Batna, Algeria
${ }^{2}$ Department of mathematics, Faculty of Mathematics and Informatics, University of Batna 2, Batna, Algeria
s.zid@univ-batna2.dz,s.Menkad@univ-batna2.dz

Let \mathcal{H} be a complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H}. For an arbitrary operator $T \in \mathcal{B}(\mathcal{H})$, we denote by $\mathcal{N}(T)$ and T^{*} for the null subspace and the adjoint operator of T , respectively.

Recall that for $T \in \mathcal{B}(\mathcal{H})$, there is a unique factorization $T=U|T|$, where $\mathcal{N}(U)=\mathcal{N}(T)=$ $\mathcal{N}(|T|), U$ is a partial isometry, i.e. $U U^{*} U=U$ and $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$ is the modulus of T. This factorization is called the polar decomposition of T. It is known that if T is invertible then U is unitary and $|T|$ is also invertible. From the polar decomposition, the Aluthge transform of T is defined by

$$
\Delta(T)=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}, \quad T \in \mathcal{B}(\mathcal{H})
$$

This transform was introduced in [1] by Aluthge, in order to study p-hyponormal. In [2], Okubo introduced a more general notion called λ-Aluthge transform which has later been studied also in detail. This is defined for any $\lambda \in[0,1]$ by

$$
\Delta_{\lambda}(T)=|T|^{\lambda} U|T|^{1-\lambda}, \quad T \in \mathcal{B}(\mathcal{H})
$$

Clearly, for $\lambda=\frac{1}{2}$ we obtain the usual Aluthge transform. Also, $\Delta_{1}(T)=|T| U$ is known as Duggal's transform. These transforms have been studied in many different contexts and considered by a number of authors. One of the interests of the Aluthge transform lies in the fact that it respects many properties of the original operator. For example T has a nontrivial invariant subspace if an only if $\Delta(T)$ does. Another important property is that T and $\Delta_{\lambda}(T)$ have the same spectrum. So T is invertible if and only if $\Delta_{\lambda}(T)$ is invertible, and in this case they are similar.

Throughout the remainder of this paper, we denote by

$$
\delta(\mathcal{H}):=\left\{T \in \mathcal{B}(\mathcal{H}) / U^{2}|T|=|T| U^{2}\right\} .
$$

It is well known that

$$
T \text { is quasinormal } \Longleftrightarrow U|T|=|T| U .
$$

Hence every quasinormal operator belongs to $\delta(\mathcal{H})$, but the converse does not hold.
We start by giving a condition under which an operator in $\delta(\mathcal{H})$ becomes quasinormal.
Proposition 1. (see, e.g., [4, p. 291]) Let n be a positive integer and $T \in \delta(\mathcal{H})$, with polar decomposition $T=U|T|$. If $U^{2 n+1}=I$, then T is quasinormal.

In general

$$
\begin{equation*}
\Delta_{\lambda}\left(T^{-1}\right)=\left(\Delta_{\lambda}(T)\right)^{-1} \tag{1}
\end{equation*}
$$

http://www.imath.kiev.ua/~young/youngconf2023
does not hold. It would be certainly interesting to know which invertible operators in $\mathcal{B}(\mathcal{H})$ satisfy the equation(1).

Recently, the answer to this problem in the case of matrices was given by D. Pappas et al. as follows:

Theorem 1. (see, e.g., [3, p. 4406]) Let $T \in \mathbb{C}^{n \times n}$ be invertible. It holds that

$$
\Delta_{\lambda}\left(T^{-1}\right)=\left(\Delta_{\lambda}(T)\right)^{-1} \Longleftrightarrow \lambda=\frac{1}{2} \text { and } T=\Delta_{\lambda}(T)
$$

We solve this problem in the case of $\lambda=1$, for bounded linear operators.
Theorem 2. (see, e.g., [4, p. 291]) Let $T \in \mathcal{B}(\mathcal{H})$ be invertible. Then

$$
T \in \delta(\mathcal{H}) \Longleftrightarrow \Delta_{1}\left(T^{-1}\right)=\left(\Delta_{1}(T)\right)^{-1}
$$

Example 1. Theorem 2 is not valid when the Duggal transform is replaced by the Aluthge transform. To see this let $T=\left(\begin{array}{cc}0 & A \\ B & 0\end{array}\right) \in \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$, where A and B are invertible positive operators such that $A B \neq B A$. Then T is invertible and

$$
T=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)\left(\begin{array}{cc}
B & 0 \\
0 & A
\end{array}\right)=U|T|
$$

is the polar decomposition of T. Since $U^{2}=I$, it follows that $U^{2}|T|=|T| U^{2}$ and so $T \in$ $\delta(\mathcal{H} \oplus \mathcal{H})$. On the other hand, since

$$
\Delta(T)=\left(\begin{array}{cc}
0 & B^{\frac{1}{2}} A^{\frac{1}{2}} \\
A^{\frac{1}{2}} B^{\frac{1}{2}} & 0
\end{array}\right) \text {, we obtain }(\Delta(T))^{-1}=\left(\begin{array}{cc}
0 & B^{-\frac{1}{2}} A^{-\frac{1}{2}} \\
A^{-\frac{1}{2}} B^{-\frac{1}{2}} & 0
\end{array}\right) .
$$

So, we have

$$
\Delta\left(T^{-1}\right)=\left|T^{-1}\right|^{\frac{1}{2}} U^{*}\left|T^{-1}\right|^{\frac{1}{2}}=\left|T^{*}\right|^{-\frac{1}{2}} U^{*}\left|T^{*}\right|^{-\frac{1}{2}}=\left(\begin{array}{cc}
0 & A^{-\frac{1}{2}} B^{-\frac{1}{2}} \\
B^{-\frac{1}{2}} A^{-\frac{1}{2}} & 0
\end{array}\right)
$$

Hence $\Delta\left(T^{-1}\right) \neq(\Delta(T))^{-1}$.
The authors would like to thank the Organizing Committee for his/her useful comments.

1. A. Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equations and Operator Theory, 1990, 13, 307-315.
2. K. Okubo, On weakly unitarily invariant norm and the Aluthge transformation, Linear Algebra Appl., 2003, 371, 369-375.
3. D. Pappas, V.N. Katsikis, P.S. Stanimirovi, The λ-Aluthge transform of EP matrices, Filomat, 2018, 32, 4403-4411.
4. S.Zid, S.Menkad, The λ-Aluthge transform and its applications to some classes of operators, Filomat, 2022, 36, No. 1, 289-301.
