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We say that g : Rn → R is locally log-Hölder continuous, abbreviated g ∈ C log
loc , if there

exists clog(g) > 0 such that

|g(x)− g(y)| ≤ clog(g)

log(e+ 1
|x−y|)

for all x, y ∈ Rn. We say that g satisfies the log-Hölder decay condition, if there exists g∞ ∈ R
and a constant clog > 0 such that

|g(x)− g∞| ≤
clog

log(e+ |x|)

for all x ∈ Rn. We say that g is globally-log-Hölder continuous, abbreviated g ∈ C log, if it
is locally log-Hölder continuous and satisfies the log-Hölder decay condition. We define the
following class of variable exponents

P log :=
{
p ∈ P :

1

p
∈ C log

}
,

which were introduced in [3, Section 2]. The mixed Lebesgue sequence space `q(·)(Lp(·)) was
introduced by Almeida and Hästö in [1]. For v ∈ Z and m = (m1, ...,mn) ∈ Zn, let Qv,m be the
dyadic cube in Rn, Qv,m = {(x1, ..., xn) : mi ≤ 2vxi < mi + 1, i = 1, 2, ..., n}. For the collection
of all such cubes we use

Q := {Qv,m : v ∈ Z,m ∈ Zn}.

For each cube Q, we denote its center by cQ, its lower left-corner by xQv,m = 2−vm of Q = Qv,m

and its side length by l(Q). For r > 0, we denote by rQ the cube concentric with Q having the
side length rl(Q). Furthermore, we put vQ = − log2 l(Q) and v+Q = max(vQ, 0). Select a pair of
Schwartz functions Φ and ϕ such that

suppFΦ ⊂ B(0, 2) and |FΦ(ξ)| ≥ c if |ξ| ≤ 5

3
(1)

and
suppFϕ ⊂ B(0, 2)\B(0, 1/2) and |Fϕ(ξ)| ≥ c if

3

5
≤ |ξ| ≤ 5

3
, (2)

where c > 0. We put ϕv := 2vnϕ(2v·), v ∈ N.

Definition 1. Let α : Rn → R, τ : Rn → R+ and p, q ∈ P0. Let Φ and ϕ satisfy (1) and
(2), respectively. The Besov-type space B

α(·),τ(·)
p(·),q(·) is the collection of all f ∈ S ′(Rn) such that

∥∥f∥∥
B
α(·),τ(·)
p(·),q(·)

:= sup
P∈Q

∥∥∥(2vα(·)ϕv ∗ f
|P |τ(·)

χP

)
v≥v+P

∥∥∥
`q(·)(Lp(·))

<∞,

where ϕ0 is replaced by Φ.

Remark 1. The definition of the spaces Bα(·),τ(·)
p(·),q(·) is independent of the choices of Φ and ϕ.
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For the spaces Bα(·),τ(·)
p(·),q(·) introduced above we want to show some embedding theorems. We

say a quasi-Banach space A1 is continuously embedded in another quasi-Banach space A2,
A1 ↪→ A2, if A1 ⊂ A2 and there is a c > 0 such that ‖f‖A2

≤ c ‖f‖A1
for all f ∈ A1. We begin

with the following elementary embeddings.

Theorem 1. Let α, τ ∈ C log
loc , τ

− > 0 and p, q, q0, q1 ∈ P log
0 .

(i) If q0 ≤ q1, then
B
α(·),τ(·)
p(·),q0(·) ↪→ B

α(·),τ(·)
p(·),q1(·).

(ii) If (α0 − α1)
− > 0, then

B
α0(·),τ(·)
p(·),q0(·) ↪→ B

α1(·),τ(·)
p(·),q1(·) .

The proof can be obtained by using the same method as in [1, Theorem 6.1]. We next
consider embeddings of Sobolev-type. It is well-known that

Bα0,τ
p0,q

↪→ Bα1,τ
p1,q

,

if α0− n
p0

= α1− n
p1
, where 0 < p0 < p1 ≤ ∞, 0 ≤ τ <∞ and 0 < q ≤ ∞ (see e.g. [2, Corollary

2.2]). In the following theorem we generalize these embeddings to variable exponent case.

Theorem 2. Let α0, α1, τ ∈ C log
loc , τ

− > 0 and p0, p1, q ∈ P log
0 with q+ <∞. If α0(·) > α1(·)

and α0(·)− n
p0(·) = α1(·)− n

p1(·) with
(
p0
p1

)+
< 1, then

B
α0(·),τ(·)
p0(·),q(·) ↪→ B

α1(·),τ(·)
p1(·),q(·) .

Remark 2. We would like to mention that

B
α0(·),τ(·)
p0(·),q(·) ↪→ B

α0(·)− n
p0(·)

,τ(·)
∞,q(·)

if α0, τ ∈ C log
loc , τ

− > 0 and p0, q, τ ∈ P log
0 , with q+ <∞.

Now we establish some further embedding of the spaces Bα(·),τ(·)
p(·),q(·) .

Theorem 3. Let α, τ ∈ C log
loc , τ

− > 0 and p, q ∈ P log
0 with q+ <∞. If (p2 − p1)+ ≤ 0, then

B
α(·)+nτ(·)+ n

p2(·)
− n
p1(·)

,0

p2(·),q(·) ↪→ B
α(·),τ(·)
p1(·),q(·).

Remark 3. The proof of Theorem 1 – 3 are given in [4].
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