THE ESTIMATES OF THE INNER RADII OF SYMMETRIC NON-OVERLAPPING DOMAINS

L. V. Vyhivska

Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine Wroclaw University of Science and Technology, Wroclaw, Poland *liudmylavyhivska@qmail.com*

Let \mathbb{N} and \mathbb{R} be the sets of natural and real numbers, respectively, \mathbb{C} be the complex plane, $\overline{\mathbb{C}} = \mathbb{C} \bigcup \{\infty\}$ be the Riemann sphere, and r(B, a) be the inner radius of the domain $B \subset \overline{\mathbb{C}}$ with respect to the point $a \in B$.

Consider the different non-overlapping domains B_0, B_1, \ldots, B_n $(B_p \cap B_j = \emptyset$ for $p \neq j$, $p, j = \overline{0, n}$) such that $a_0 = 0 \in B_0 \subset \overline{\mathbb{C}}$, $a_k \in B_k \subset \mathbb{C}$, $k = \overline{1, n}$, moreover domains B_1, \ldots, B_n have symmetry with respect to unit circle, and for $\gamma \in (0, n]$ consider the value

$$I_n(\gamma) = r^{\gamma} (B_0, 0) \prod_{k=1}^n r(B_k, a_k),$$
 (1)

Problem 1 (see [1]). For any fixed $\gamma \in (0, n]$ to find the maximum of the functional (1) and to show that this maximum is reached for some configuration of the domains B_k and points a_k , $k = \overline{0, n}$, which has *n*-fold symmetry.

This problem is one of the problems of the geometric function theory. The problem has a solution only if $\gamma \leq n$ as soon as $\gamma = n + \epsilon, \epsilon > 0$, the problem has no solution. Currently it still unsolved in general, only partial results are known (see, f.e. [2]).

The following theorem holds (prove see in [3]).

Theorem 1. Let $n = \overline{4,7}$, $1 < \gamma \leq \gamma_n$, $\gamma_4 = 1, 6$, $\gamma_5 = 1, 65$, $\gamma_6 = 1, 7, \gamma_7 = 1, 77$. Then for any different system of points $\{a_k\}_{k=0}^n$ such that $a_0 = 0$, $|a_k| = 1$, $k = \overline{1,n}$ and for any different system of non-overlapping domains $\{B_k\}_{k=0}^n$ such that $a_0 \in B_0 \subset \overline{\mathbb{C}}$, $a_k \in B_k \subset \mathbb{C}$, $k = \overline{1,n}$, moreover domains $\{B_k\}_{k=1}^n$ have symmetry with respect to unit circle, the following inequality holds

$$r^{\gamma}(B_0,0)\prod_{k=1}^n r(B_k,a_k) \leqslant \left(\frac{4}{n}\right)^n \frac{\left(\frac{2\gamma}{n^2}\right)^{\frac{\gamma}{n}}}{\left(1-\frac{2\gamma}{n^2}\right)^{\frac{n}{2}+\frac{\gamma}{n}}} \left(\frac{n-\sqrt{2\gamma}}{n+\sqrt{2\gamma}}\right)^{\sqrt{2\gamma}}.$$

Equality is attained if a_k and B_k , $k = \overline{0, n}$ are, respectively, poles and circular domains of the quadratic differential

$$Q(w)dw^{2} = -\frac{\gamma w^{2n} + 2(n^{2} - \gamma)w^{n} + \gamma}{w^{2}(w^{n} - 1)^{2}} dw^{2}.$$

The author is greatly indebted to Professor <u>Aleksander Bakhtin</u> for helping to get this result and numerous suggestions.

- Dubinin V. N. Symmetrization in the geometric theory of functions of a complex variable. Russ. Math. Surv., 49, No. 1, 1–79.
- Bakthin A. K., Bakhtina G. P., Zelinskii Yu. B. Topological-algebraic structures and geometric methods in complex analysis. Proceedings of the Institute of Mathematics of NASU. — Kyiv: Institute of Mathematics of NASU, 2008, 308 p.
- Bakthin A. K., Vyhivska L. V. The problem of extremal decomposition of a complex plane with free poles on a circle. J. Math. Sci., 2022, 260, No. 5, 630–650.