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Let N and R be the sets of natural and real numbers, respectively, C be the complex plane,
C = C

⋃
{∞} be the Riemann sphere, and r(B, a) be the inner radius of the domain B ⊂ C

with respect to the point a ∈ B.
Consider the different non-overlapping domains B0, B1, . . . , Bn (Bp ∩ Bj = Ø for p 6= j,

p, j = 0, n) such that a0 = 0 ∈ B0 ⊂ C, ak ∈ Bk ⊂ C, k = 1, n, moreover domains B1, . . . , Bn

have symmetry with respect to unit circle, and for γ ∈ (0, n] consider the value

In(γ) = rγ (B0, 0)
n∏
k=1

r (Bk, ak) , (1)

Problem 1 (see [1]). For any fixed γ ∈ (0, n] to find the maximum of the functional (1)
and to show that this maximum is reached for some configuration of the domains Bk and points
ak, k = 0, n, which has n-fold symmetry.

This problem is one of the problems of the geometric function theory. The problem has a
solution only if γ 6 n as soon as γ = n + ε, ε > 0, the problem has no solution. Currently it
still unsolved in general, only partial results are known (see, f.e. [2]).

The following theorem holds (prove see in [3]).

Theorem 1. Let n = 4, 7, 1 < γ 6 γn, γ4 = 1, 6, γ5 = 1, 65, γ6 = 1, 7, γ7 = 1, 77. Then for
any different system of points {ak}nk=0 such that a0 = 0, |ak| = 1, k = 1, n and for any different
system of non-overlapping domains {Bk}nk=0 such that a0 ∈ B0 ⊂ C, ak ∈ Bk ⊂ C, k = 1, n,
moreover domains {Bk}nk=1 have symmetry with respect to unit circle, the following inequality
holds

rγ (B0, 0)
n∏
k=1

r (Bk, ak) 6
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Equality is attained if ak and Bk, k = 0, n are, respectively, poles and circular domains of the
quadratic differential

Q(w)dw2 = −γw
2n + 2(n2 − γ)wn + γ

w2(wn − 1)2
dw2.

The author is greatly indebted to Professor Aleksander Bakhtin for helping to get this result and
numerous suggestions.
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