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We study a Crum transformation of the Laguerre operators. Recall some terms.

Definition 1 (see [4, Ch. 5]). The Laguerre polynomials Ln(x, α) are defined by

Ln(x, α) =
n∑
k=0

(
n+ α

n− k

)
(−x)k

k!
, n ∈ Z+ and α ∈ R\Z−.

If α > −1, then the sequence of Laguerre polynomials {Ln(x, α)}∞n=0 is orthogonal in the
Hilbert space L2(R+, wα), where the weight function wα is defined by

wα(x) = xαe−x

and Ln(x, α) are called the classical Laguerre polynomials.
If α < −1 and α 6∈ Z−, then the sequence of Laguerre polynomials {Ln(x, α)}∞n=0 is orthog-

onal in the Pontryagin space Π(α) (see [1]) and Ln(x, α) are called the nonclassical Laguerre
polynomials.

In [1,2] the Laguerre operator was studied in the form ` = xy′′ + (α + 1 − x)y′. But, we
study the self-adjoint Laguerre operator on L2(0,+∞), which is defined by

`α = − d2

dx2
+
α2 − 1

4

x2
+ x2.

If α > −1, then `α is called a classical Laguerre operator. If α < −1 and α 6∈ Z−, then `α
is called a nonclassical Laguerre operator.

As is know [4, Ch. 5], the point spectrum of `α is

σp(`α) =
{
λn|λn = 2(1 + α) + 4n, n ∈ Z+

}
and eigenfunctions have the following representation

φn(x, α) = e−
x2

2 xα+
1
2Ln(x2, α), n ∈ Z+.

Definition 2 (see [3, Ch. 2]). Let ` = −
d2

dx2
+q be the self-adjoint Sturm-Liouville operator

on L2(a, b) and let y1, ..., yn be the first nth eigenfunctions of `. The Crum transformation of `
is called the following self-adjoint Sturm-Liouville operator

˜̀= −
d2

dx2
+ q̃,

where the potential q̃ can be found by

q̃(x) = q(x)− 2
d

dx

(
W ′(y1, ..., yn)

W (y1, ..., yn)

)
, W (y1, ..., yn) =

∣∣∣∣∣∣∣
y1(x) . . . yn(x)
... . . . ...

y
(n−1)
1 (x) . . . y

(n−1)
n (x)

∣∣∣∣∣∣∣ .
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Theorem 1. Let `α be the self-adjoint Laguerre operator with α 6∈ Z−. Then the Crum
transformation of `α constructed by φ0 and φ1 is

˜̀
α,2 = − d2

dx2
+

(
(α + 2)2 − 1

4

x2
+ x2 + 4

)
.

Furthermore
σp(˜̀

α,2) = σp(`α)\{λ0, λ1}

and the eigenfunctions of ˜̀
α,2 are

ψn(x, α) = φn(x, α + 2).

Corollary 1. Let `α be the nonclassical Laguerre operator with α ∈ (−3,−1)\{−2}. Then

˜̀
α,2 = `α+2 + 4.

Theorem 2. Let `α be the self-adjoint Laguerre operator with α 6∈ Z−. Then the Crum
transformation of `α constructed by φ0, φ1, φ2 and φ3 is

˜̀
α,4 = − d2

dx2
+

(
(α + 4)2 − 1

4

x2
+ x2 + 8

)
.

Furthermore
σp(˜̀

α,4) = σp(`α)\{λ0, λ1, λ2, λ3}

and the eigenfunctions of ˜̀
α,4 are

ψn(x, α) = φn(x, α + 4).

Corollary 2. Let `α be the nonclassical Laguerre operator with α ∈ (−5,−1)\{−4,−3,−2}.
Then

˜̀
α,4 = `α+4 + 8.
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