SAMPLING RECOVERY IN THE UNIFORM NORM

K. V. Pozharska

Institute of Mathematics of the National Academy of Science of Ukraine, Kyiv, Ukraine Chemnitz University of Technology, Chemnitz, Germany pozharska.k@qmail.com

We study the recovery of functions in the uniform norm based on function evaluations. We obtain worst case error bounds for general classes of functions, also in L_p -norm, in terms of the best L_2 -approximation from a given nested sequence of subspaces combined with bounds on the the Christoffel function of these subspaces.

Let D be an arbitrary set, μ be a measure on D. By $L_p = L_p(\mu)$, $1 \leq p < \infty$, we denote the space of complex-valued functions that are *p*-integrable with respect to μ , and by $L_{\infty} = L_{\infty}(\mu)$ the space of essentially bounded functions on D. Moreover, we denote by B(D) the space of bounded, complex-valued functions on D with the sup-norm.

For a class $F \subset L_p$ and $n \in \mathbb{N}$, we define the *n*-th linear sampling number in L_p by

$$g_n^{\mathrm{lin}}(F, L_p) := \inf_{x_1, \dots, x_n \in D, \ \varphi_1, \dots, \varphi_n \in L_p} \sup_{f \in F} \left\| f - \sum_{i=1}^n f(x_i) \varphi_i \right\|_p.$$

This is the minimal worst case error that can be achieved with linear algorithms based on at most n function values, if the error is measured in L_p .

Our goal is to identify properties of classes F that allow for the existence of good linear sampling recovery algorithms for the uniform norm. The main assumption here is that there exists a sequence of subspaces V_n that are "good" for L_2 -approximation. In addition, the (inverse of the) Christoffel function, which is sometimes also called spectral function, defined by

$$\Lambda_n := \Lambda(V_n) := \sup_{f \in V_n, f \neq 0} \|f\|_{\infty} / \|f\|_2, \quad n \in \mathbb{N},$$

will play an important role. Note that for any orthonormal basis $\{b_k\}_{k=1}^n$ of the *n*-dimensional space V_n we have $\Lambda_n^2 = \left\| \sum_{k=1}^n |b_k|^2 \right\|_{\infty}$. One of the main results can be stated as follows.

Theorem 1. Let μ be a finite measure on a set D, $(V_n)_{n=1}^{\infty}$ be a nested sequence of subspaces of B(D) of dimension n, and F be a separable subset of B(D). Assume that

$$\Lambda(V_n) \lesssim n^{\beta}$$
 and $\sup_{f \in F} \inf_{g \in V_n} \|f - g\|_2 \lesssim n^{-\alpha} (\log n)^{\gamma}$

for some $\alpha > \beta \ge 1/2$ and $\gamma \in \mathbb{R}$. Then, for all $1 \le p \le \infty$,

$$g_n^{\text{lin}}(F, L_p) \lesssim n^{-\alpha + (1-2/p) + \beta} (\log n)^{\gamma}$$

with $a_+ := \max\{a, 0\}$.

Note, that the condition on β is no restriction because for a finite measure, where L_2 -norm is dominated by L_{∞} -norm, we always have $\beta \ge 1/2$. See also [1, Thm. 12] for the general statement with more explicit constants. In the talk we will discuss some examples that show that this bound is often sharp up to constants.

http://www.imath.kiev.ua/~young/youngconf2023

There are numerous results in the literature on uniform approximation, often for specific classes F and explicit algorithms. The advantage of Theorem 1 is its generality, as it comes without any possibly redundant assumption. However, this result is non-constructive. The underlying (least squares) algorithm is based on a random construction and subsampling based on the solution of the Kadison-Singer problem.

To measure the quality of our upper bounds, one may take the Gelfand widths of the class F as a benchmark. The *n*-th Gelfand width of F in L_p is defined by

$$c_n(F, L_p) := \inf_{\psi \colon \mathbb{C}^n \to L_p, N \colon F \to \mathbb{C}^n \text{ linear } \sup_{f \in F} \left\| f - \psi \circ N(f) \right\|_p}$$

and measures the worst case error of the optimal (possibly non-linear) algorithm using n pieces of arbitrary linear information.

Theorem 2. There are absolute constants $b, c \in \mathbb{N}$ such that the following holds. Let μ be a measure on a set D and $H \subset L_2$ be a reproducing kernel Hilbert space with kernel

$$K(x,y) = \sum_{k=1}^{\infty} \sigma_k^2 b_k(x) \,\overline{b_k(y)}, \qquad x, y \in D,$$

where $(\sigma_k)_{k=1}^{\infty} \in \ell_2$ is a non-increasing sequence and $\{b_k\}_{k=1}^{\infty}$ is an orthonormal system in L_2 such that there is a constant B > 0 with $\Lambda_n^2 \leq Bn$ for all $n \in \mathbb{N}$. Under these conditions we have $H \subset L_{\infty}$ and

$$g_{bn}^{\rm lin}(H, L_{\infty})^2 \leqslant cB \sum_{k>n} \sigma_k^2.$$

In particular, if μ is a finite measure, then

$$g_{bn}^{\text{lin}}(H, L_{\infty}) \leqslant \sqrt{cB \cdot \mu(D)} \cdot c_n(H, L_{\infty}).$$

This result has been observed independently in [2, Thm. 2.2] for the trigonometric system. It represents a special case of a more general result for reproducing kernel Hilbert spaces where we do not need the uniform boundedness of the basis, see [1, Thm. 8].

Clearly, Theorem 2 can also be applied for other orthonormal systems than the trigonometric monomials, including the Haar or the Walsh system, certain wavelets, the Chebychev polynomials, and the spherical harmonics, if μ is their corresponding orthogonality measure.

In all these cases, we obtain that linear sampling algorithms are (up to constants) as powerful as arbitrary non-linear algorithms using general linear measurements. Note that we do not require any decay of the Gelfand width c_n .

This is a joint work with David Krieg, Mario Ullrich and Tino Ullrich. KP would like to acknowledge support by the Philipp Schwartz Fellowship of the Alexander von Humboldt Foundation.

- 1. Krieg D., Pozharska K., Ullrich M., Ullrich T. Sampling recovery in the uniform norm. arXiv:2305.07539, 2023.
- 2. Geng J., Wang H. On the power of standard information for tractability for L_1 approximation of periodic functions in the worst case setting. arXiv:2304.14748, 2023.