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We study the recovery of functions in the uniform norm based on function evaluations. We
obtain worst case error bounds for general classes of functions, also in Lp-norm, in terms of the
best L2-approximation from a given nested sequence of subspaces combined with bounds on
the the Christoffel function of these subspaces.

Let D be an arbitrary set, µ be a measure on D. By Lp = Lp(µ), 1 6 p <∞, we denote the
space of complex-valued functions that are p-integrable with respect to µ, and by L∞ = L∞(µ)
the space of essentially bounded functions on D. Moreover, we denote by B(D) the space of
bounded, complex-valued functions on D with the sup-norm.

For a class F ⊂ Lp and n ∈ N, we define the n-th linear sampling number in Lp by

glinn (F,Lp) := inf
x1,...,xn∈D, ϕ1,...,ϕn∈Lp

sup
f∈F

∥∥∥∥∥f −
n∑
i=1

f(xi)ϕi

∥∥∥∥∥
p

.

This is the minimal worst case error that can be achieved with linear algorithms based on at
most n function values, if the error is measured in Lp.

Our goal is to identify properties of classes F that allow for the existence of good linear
sampling recovery algorithms for the uniform norm. The main assumption here is that there
exists a sequence of subspaces Vn that are “good” for L2-approximation. In addition, the (inverse
of the) Christoffel function, which is sometimes also called spectral function, defined by

Λn := Λ(Vn) := sup
f∈Vn, f 6=0

‖f‖∞/‖f‖2, n ∈ N,

will play an important role. Note that for any orthonormal basis {bk}nk=1 of the n-dimensional
space Vn we have Λ2

n =
∥∥∑n

k=1 |bk|
2
∥∥
∞.

One of the main results can be stated as follows.

Theorem 1. Let µ be a finite measure on a set D, (Vn)∞n=1 be a nested sequence of subspaces
of B(D) of dimension n, and F be a separable subset of B(D). Assume that

Λ(Vn) . nβ and sup
f∈F

inf
g∈Vn
‖f − g‖2 . n−α(log n)γ

for some α > β > 1/2 and γ ∈ R. Then, for all 1 6 p 6∞,

glinn (F,Lp) . n−α+(1−2/p)+β(log n)γ

with a+ := max{a, 0}.

Note, that the condition on β is no restriction because for a finite measure, where L2-norm
is dominated by L∞-norm, we always have β > 1/2. See also [1, Thm. 12] for the general
statement with more explicit constants. In the talk we will discuss some examples that show
that this bound is often sharp up to constants.
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There are numerous results in the literature on uniform approximation, often for specific
classes F and explicit algorithms. The advantage of Theorem 1 is its generality, as it comes
without any possibly redundant assumption. However, this result is non-constructive. The
underlying (least squares) algorithm is based on a random construction and subsampling based
on the solution of the Kadison-Singer problem.

To measure the quality of our upper bounds, one may take the Gelfand widths of the class F
as a benchmark. The n-th Gelfand width of F in Lp is defined by

cn(F,Lp) := inf
ψ : Cn→Lp, N : F→Cn linear

sup
f∈F

∥∥f − ψ ◦N(f)
∥∥
p

and measures the worst case error of the optimal (possibly non-linear) algorithm using n pieces
of arbitrary linear information.

Theorem 2. There are absolute constants b, c ∈ N such that the following holds. Let µ be
a measure on a set D and H ⊂ L2 be a reproducing kernel Hilbert space with kernel

K(x, y) =
∞∑
k=1

σ2
k bk(x) bk(y), x, y ∈ D,

where (σk)
∞
k=1 ∈ `2 is a non-increasing sequence and {bk}∞k=1 is an orthonormal system in L2

such that there is a constant B > 0 with Λ2
n 6 Bn for all n ∈ N. Under these conditions we

have H ⊂ L∞ and
glinbn (H,L∞)2 6 cB

∑
k>n

σ2
k.

In particular, if µ is a finite measure, then

glinbn (H,L∞) 6
√
cB · µ(D) · cn(H,L∞).

This result has been observed independently in [2, Thm. 2.2] for the trigonometric system.
It represents a special case of a more general result for reproducing kernel Hilbert spaces where
we do not need the uniform boundedness of the basis, see [1, Thm. 8].

Clearly, Theorem 2 can also be applied for other orthonormal systems than the trigono-
metric monomials, including the Haar or the Walsh system, certain wavelets, the Chebychev
polynomials, and the spherical harmonics, if µ is their corresponding orthogonality measure.

In all these cases, we obtain that linear sampling algorithms are (up to constants) as powerful
as arbitrary non-linear algorithms using general linear measurements. Note that we do not
require any decay of the Gelfand width cn.

This is a joint work with David Krieg, Mario Ullrich and Tino Ullrich. KP would like to acknowl-
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