
International Conference of Young Mathematicians
The Institute of Mathematics of the National Academy of Sciences of Ukraine

June 1–3, 2023, Kyiv, Ukraine

Mappings contracting perimeters of triangles
E. A. Petrov

Institute of Applied Mathematics and Mechanics of the National Academy of Sciences
of Ukraine, Cherkasy (Sloviansk), Ukraine

eugeniy.petrov@gmail.com

The Contraction Mapping Principle was established by S. Banach in his dissertation (1920)
and published in 1922 [1]. Although the idea of successive approximations in a number of
concrete situations (solution of differential and integral equations, approximation theory) had
appeared earlier in the works of P. L. Chebyshev, E. Picard, R. Caccioppoli, and others. S. Ba-
nach was the first who formulated this result in a correct abstract form suitable for a wide range
of applications. After a century, the interest of mathematicians around the world to fixed-point
theorems is still very high. This is confirmed by the appearance in recent decades of numerous
articles and monographs devoted to the fixed point theory and its applications.

In this work we consider a new type of mappings in metric spaces which can be characterized
as mappings contracting perimeters of triangles. It is shown that such mappings are continuous.
The fixed point theorem for such mappings is proved and the classical Banach fixed-point
theorem is obtained like a simple corollary. An example of a mapping contractive perimeters
of triangles which is not a contraction mapping is constructed.

Definition 1. Let (X, d) be a metric space with |X| > 3. We shall say that T : X → X
is a mapping contracting perimeters of triangles on X if there exists α ∈ [0, 1) such that the
inequality

d(Tx, Ty) + d(Ty, Tz) + d(Tx, Tz) 6 α(d(x, y) + d(y, z) + d(x, z)) (1)

holds for all three pairwise distinct points x, y, z ∈ X.

Note that the requirement for x, y, z ∈ X to be pairwise distinct is essential. One can see
that otherwise this definition is equivalent to the definition of contraction mapping.

Proposition 1. Mappings contracting perimeters of triangles are continuous.

Theorem 1. Let (X, d), |X| > 3, be a complete metric space and let the mapping T : X →
X satisfy the following two conditions:

(i) T (T (x)) 6= x for all x ∈ X such that Tx 6= x.

(ii) T is a mapping contracting perimeters of triangles on X.

Then T has a fixed point. The number of fixed points is at most two.

Remark 1. Suppose that under the supposition of the theorem the mapping T has a fixed
point x∗ which is a limit of some iteration sequence x0, x1 = Tx0, x2 = Tx1, . . . such that
xn 6= x∗ for all n = 1, 2, . . .. Then x∗ is a unique fixed point.

Example 1. Let us construct an example of the mapping T contracting perimeters of
triangles which has exactly two fixed points. Let X = {x, y, z}, d(x, y) = d(y, z) = d(x, z) = 1,
and let T : X → X be such that Tx = x, Ty = y and Tz = x. One can easily see that
conditions (i) and (ii) of Theorem 1 are fulfilled.
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Example 2. Let us show that condition (i) of Theorem 1 is necessary. Let X = {x, y, z},
d(x, y) = d(y, z) = d(x, z) = 1, and let T : X → X be such that Tx = y, Ty = x and Tz = x.
One can easily see that condition (ii) of Theorem 1 is fulfilled but T does not have any fixed
point.

Let (X, d) be a metric space. Then a mapping T : X → X is called a contraction mapping
on X if there exists α ∈ [0, 1) such that

d(Tx, Ty) 6 αd(x, y) (2)

for all x, y ∈ X.

Corollary 1. (Banach fixed-point theorem) Let (X, d) be a nonempty complete metric
space with a contraction mapping T : X → X. Then T admits a unique fixed point.

Proof. For |X| = 1, 2 the proof is trivial. Let |X| > 3. Suppose that there exists x ∈ X
such that T (Tx) = x. Consequently, d(x, Tx) = d(Tx, x) = d(Tx, T (Tx)), which contradicts
to (2). Thus, condition (i) of Theorem 1 holds. Let x, y, z ∈ X be pairwise distinct. By (2) we
obtain d(T (x), T (y)) 6 αd(x, y), d(T (y), T (z)) 6 αd(y, z) and d(T (x), T (z)) 6 αd(x, z) which
immediately implies condition (ii) of Theorem 1. This completes the proof of existence of fixed
point.

The uniqueness can be shown in a standard way.

Example 3. Let us construct an example of a mapping T : X → X contracting perimeters
of triangles that is not a contraction mapping for a metric space X with |X| = ℵ0. Let
X = {x∗, x0, x1, . . .} and let a be positive real number. Define a metric d on X as follows:

d(x, y) =


a/2bi/2c, if x = xi, y = xi+1, i = 0, 1, 2, ...,

d(xi, xi+1) + · · ·+ d(xj−1, xj), if x = xi, y = xj, i+ 1 < j,

4a− d(x0, xi), if x = xi, y = x∗,

0, if x = y,

where b·c is the floor function.
Define a mapping T : X → X as Txi = xi+1 for all i = 0, 1, . . . and Tx∗ = x∗. Since

d(x2n, x2n+1) = d(Tx2n, Tx2n+1), n = 0, 1, 2..., using (2) we see that T is not a contraction
mapping. It is possible to show that inequality (1) holds for every three pairwise distinct
points from the space X.
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