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In this presentation we use the (M,N)-Lucas Polynomials to introduce a new family of
holomorphic and bi-univalent functions which involve a linear combination between Bazilevič
functions and β-pseudo-starlike function defined in the unit disk D. We also establish upper
bounds for the second and third coefficients of functions that belong to this new family and we
discuss the Fekete-Szegő problem.

The Lucas Polynomials plays an important role in a diversity of disciplines as the mathe-
matical, statistical, physical and engineering sciences.

We define the family LMN(λ, α, β;x) as follows

Definition 1. For 0 ≤ λ ≤ 1; α ≥ 0; β ≥ 1 let LMN(λ, α, β;x) denote the subclass of Σ
such that
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In particular, if we choose α = λ = 0 or λ = β = 1 in Definition 1, we have LMN(0, 0, β;x) =
LMN(1, α, 1;x) := Pσ(0;x) for the family of functions f ∈ Σ
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If M(x) = 2x,N(x) = −1 then
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Theorem 1. For 0 ≤ λ ≤ 1, α ≥ 0 and β ≥ 1, let f belongs to the family LMN(λ, α, β;x)
and N(x) 6= 0.

Let denote
Ω(λ, α, β) = (1− λ)(α + 1) + λ(2β − 1),

E(λ, α, β,M(x), N(x)) =
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|[(1− λ)(α + 2)(α + 1) + 2λβ(2β − 1)− 2Ω2(λ, α, β)]M2(x)− 4Ω2(λ, α, β)N(x)|
and
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Then
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and
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We can also obtain

|a2| ≤
|LM,N,1(x)|

(1− λ)(α + 1) + λ(2β − 1)
≤ |M(x)|

(1− λ)(α + 1) + λ(2β − 1)
.

In the next theorem, we discuss "the Fekete-Szegő Problem" for the family LMN(λ, α, β;x).

Theorem 2. For 0 ≤ λ ≤ 1, α ≥ 0, β ≥ 1 and δ ∈ R, let f ∈ A belongs to the family
LMN(λ, α, β;x). Then

∣∣a3 − δa2
2

∣∣ ≤



|M(x)|
(1−λ)(α+2)+λ(3β−1)

; for |δ − 1| ≤ 1
2[(1−λ)(α+2)+λ(3β−1)]

×

×
∣∣∣(1− λ)(α + 2)(α + 1) + 2λβ(2β − 1)− 2Ω2(λ, α, β)− 4Ω2(λ,α,β)N(x)

M2(x)

∣∣∣ ,
2|M(x)|3|δ−1|

|[(1−λ)(α+2)(α+1)+2λβ(2β−1)−2Ω2(λ,α,β)]M2(x)−4Ω2(λ,α,β)N(x)| ;

for |δ − 1| ≥ 1
2[(1−λ)(α+2)+λ(3β−1)]

×

×
∣∣∣(1− λ)(α + 2)(α + 1) + 2λβ(2β − 1)− 2Ω2(λ, α, β)− 4Ω2(λ,α,β)N(x)

M2(x)

∣∣∣
.

http://www.imath.kiev.ua/~young/youngconf2023


