On Coefficient Bounds and Fekete-Szegô inequality for a Certain Family of Holomorphic and Bi-Univalent Functions Defined by (M,N)-Lucas Polynomials

Páll-Szabó Ágnes Orsolya ${ }^{1}$

${ }^{1}$ Department of Statistics-Forecasts-Mathematics, Faculty of Economics and Business
Administration, Babeş-Bolyai University, Cluj-Napoca, Romania agnes.pallszabo@econ.ubbcluj.ro

In this presentation we use the (M, N)-Lucas Polynomials to introduce a new family of holomorphic and bi-univalent functions which involve a linear combination between Bazilevič functions and β-pseudo-starlike function defined in the unit disk \mathbb{D}. We also establish upper bounds for the second and third coefficients of functions that belong to this new family and we discuss the Fekete-Szegő problem.

The Lucas Polynomials plays an important role in a diversity of disciplines as the mathematical, statistical, physical and engineering sciences.

We define the family $\mathscr{L}_{M N}(\lambda, \alpha, \beta ; x)$ as follows
Definition 1. For $0 \leq \lambda \leq 1 ; \alpha \geq 0 ; \beta \geq 1$ let $\mathscr{L}_{M N}(\lambda, \alpha, \beta ; x)$ denote the subclass of Σ such that

$$
(1-\lambda) \frac{z^{1-\alpha} f^{\prime}(z)}{(f(z))^{1-\alpha}}+\lambda \frac{z\left(f^{\prime}(z)\right)^{\beta}}{f(z)} \prec T_{L}(M, N ; x, z)-1
$$

and

$$
(1-\lambda) \frac{w^{1-\alpha}\left(f^{-1}(w)\right)^{\prime}}{\left(f^{-1}(w)\right)^{1-\alpha}}+\lambda \frac{w\left(\left(f^{-1}(w)\right)^{\prime}\right)^{\beta}}{f^{-1}(w)} \prec T_{L}(M, N ; x, w)-1
$$

In particular, if we choose $\alpha=\lambda=0$ or $\lambda=\beta=1$ in Definition 1 , we have $\mathscr{L}_{M N}(0,0, \beta ; x)=$ $\mathscr{L}_{M N}(1, \alpha, 1 ; x):=P_{\sigma}(0 ; x)$ for the family of functions $f \in \Sigma$

$$
\frac{z f^{\prime}(z)}{f(z)} \prec T_{L}(M, N ; x, z)-1
$$

and

$$
\frac{w\left(f^{-1}(w)\right)^{\prime}}{f^{-1}(w)} \prec T_{L}(M, N ; x, w)-1 .
$$

If $M(x)=1, N(x)=0$ then $\frac{z f^{\prime}(z)}{f(z)} \prec T_{L}(1,0 ; x, z)-1=\frac{1}{1-z}$.
If $M(x)=2 x, N(x)=-1$ then $\frac{z f^{\prime}(z)}{f(z)} \prec T_{L}(2 x,-1 ; x, z)-1=\frac{1}{1-2 x z+z^{2}}$.
Theorem 1. For $0 \leq \lambda \leq 1, \alpha \geq 0$ and $\beta \geq 1$, let f belongs to the family $\mathscr{L}_{M N}(\lambda, \alpha, \beta ; x)$ and $N(x) \neq 0$.

Let denote

$$
\begin{gathered}
\Omega(\lambda, \alpha, \beta)=(1-\lambda)(\alpha+1)+\lambda(2 \beta-1), \\
E(\lambda, \alpha, \beta, M(x), N(x))=
\end{gathered}
$$

$$
=\frac{\sqrt{2}|M(x)| \sqrt{|M(x)|}}{\sqrt{\left|\left[(1-\lambda)(\alpha+2)(\alpha+1)+2 \lambda \beta(2 \beta-1)-2 \Omega^{2}(\lambda, \alpha, \beta)\right] M^{2}(x)-4 \Omega^{2}(\lambda, \alpha, \beta) N(x)\right|}}
$$

and

$$
F(\lambda, \alpha, \beta, M(x))=\frac{|M(x)|}{\Omega(\lambda, \alpha, \beta)}
$$

Then

$$
\left|a_{2}\right| \leq \min \{E(\lambda, \alpha, \beta, M(x), N(x)), F(\lambda, \alpha, \beta, M(x))\}
$$

and

$$
\left|a_{3}\right| \leq \frac{M^{2}(x)}{\Omega^{2}(\lambda, \alpha, \beta)}+\frac{|M(x)|}{(1-\lambda)(\alpha+2)+\lambda(3 \beta-1)}
$$

We can also obtain

$$
\left|a_{2}\right| \leq \frac{\left|L_{M, N, 1}(x)\right|}{(1-\lambda)(\alpha+1)+\lambda(2 \beta-1)} \leq \frac{|M(x)|}{(1-\lambda)(\alpha+1)+\lambda(2 \beta-1)}
$$

In the next theorem, we discuss "the Fekete-Szegő Problem" for the family $\mathscr{L}_{M N}(\lambda, \alpha, \beta ; x)$.
Theorem 2. For $0 \leq \lambda \leq 1, \alpha \geq 0, \beta \geq 1$ and $\delta \in \mathbb{R}$, let $f \in \mathcal{A}$ belongs to the family $\mathscr{L}_{M N}(\lambda, \alpha, \beta ; x)$. Then

