ENTIRE FUNCTIONS THAT SHARE 0 WITH THEIR SHIFTS AND DIFFERENCE OPERATORS

Boudaoud Miloudi

Department of Mathematics, Laboratory of Pure and Applied Mathematics, Mostaganem University, Mostaganem, Algeria
miloudi.boudaoud@gmail.com, boudaoud.miloudi.etu@univ-mosta.dz
The uniqueness of meromorphic functions sharing values with their shifts or difference operators has been investigated by many authors, see e.g. [1-4], we define its shift by $f_{c}(z)=f(z+c)$ and its difference operators by

$$
\Delta_{c} f(z)=f(z+c)-f(z), \Delta_{c}^{n} f(z)=\Delta_{c}^{n-1}\left(\Delta_{c} f(z)\right), n \in \mathbb{N}, n \geq 2
$$

In this work, we investigate the uniqueness of an entire function $f(z)$ sharing one finite value a CM with $f(z+c)$ and $\Delta_{c}^{2} f(z)$. In this case we find that $f(z)=h(z) e^{\frac{\alpha}{c} z}$ where $\alpha \neq 0$ and $h(z)$ is periodic entire function of period c. Here, we say that two entire functions $f(z)$ and $g(z)$ share a value a CM if $f(z)-a$ and $g(z)-a$ have the same zeros with same multiplicities.

Theorem 1. [3] Let $f(z)$ be a transcendental entire function of finite order such that $f(z) \not \equiv$ $f(z+c)$. Then $f(z), f(z+c)$ and $\Delta_{c} f(z)$ can not share any finite value $a \neq 0 C M$. Furthermore, if $a=0, f(z)$ must be of the following form $f(z)=h(z) e^{\frac{\alpha}{c} z}$, where $\alpha \neq 0$ and $h(z)$ is periodic entire function of period c.

Theorem 2. Let $f(z)$ be a transcendental entire function of finite order such that $f(z) \not \equiv$ $f(z+c)$. Then $f(z), f(z+c)$ and $\Delta_{c}^{2} f(z)$ can not share any finite value $a \neq 0 C M$. Furthermore, if $a=0, f(z)$ must be of the following form $f(z)=h(z) e^{\frac{\alpha}{c} z}$, where $\alpha \neq 0$ and $h(z)$ is periodic entire function of period c.

Example 1. The entire function $f(z)=\exp (z)$ such that $f(z+1)=e f(z), \Delta_{1}^{2} f(z)=$ $(e-1)^{2} f(z)$, and hence $f(z), f(z+1)$ and $\Delta_{1}^{2} f(z)$ share $0 C M$.

Theorem 3. Let $f(z)$ be a transcendental entire function of finite order such that $f(z) \not \equiv$ $f(z+c)$. Then $f(z), \Delta_{c}^{2} f(z)$ and $\Delta_{c}^{2} f(z+c)$ can not share any finite value $a \neq 0$ CM. Furthermore, if $a=0, f(z)$ must be of the following form $f(z)=h(z) e^{\frac{\alpha}{c} z}$, where $\alpha \neq 0$ and $h(z)$ is periodic entire function of period c.

Example 2. The entire function $f(z)=\exp (z)$ such that $\Delta_{1}^{2} f(z)=(e-1)^{2} f(z)$, $\Delta_{1}^{2} f(z+1)=e(e-1)^{2} f(z)$, and hence $f(z), \Delta_{1}^{2} f(z)$ and $\Delta_{1}^{2} f(z+1)$ share $0 C M$.

1. Chen B., Chen Z. X. and Li S. Uniqueness problems on entire functions and their difference operators or shifts. Abstr. Appl. Anal., 2012.
2. Chen B. and Li S. Uniqueness theorems on entire functions that share small functions with their difference operators. Adv. Diff. Equa., 2014.
3. El Farissi A., Latreuch Z., Asiri A. On the uniqueness theory of entire functions and their difference operators, Complex Anal. Oper. Theory, 2016, 10, No. 6, 1317-1327.
4. Heittokangas J., Korhonen R., Laine I., Rieppo J., Zhang J. Value sharing results for shifts of meromorphic functions and sufficient conditions for periodicity. J. Math. Anal. Appl., 2009, 355, 352-363.
