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The uniqueness of meromorphic functions sharing values with their shifts or difference opera-
tors has been investigated by many authors, see e.g. [1–4], we define its shift by fc (z) = f (z + c)
and its difference operators by

∆cf (z) = f (z + c)− f (z) ,∆n
c f (z) = ∆n−1

c (∆cf (z)) , n ∈ N, n ≥ 2.

In this work, we investigate the uniqueness of an entire function f(z) sharing one finite
value a CM with f (z + c) and ∆2

cf (z). In this case we find that f(z) = h (z)e
α
c
z where α 6= 0

and h(z) is periodic entire function of period c. Here, we say that two entire functions f(z) and
g(z) share a value a CM if f(z)− a and g(z)− a have the same zeros with same multiplicities.

Theorem 1. [3] Let f(z) be a transcendental entire function of finite order such that f(z) 6≡
f(z+c). Then f(z), f (z + c) and ∆cf (z) can not share any finite value a 6= 0 CM. Furthermore,
if a = 0, f(z) must be of the following form f(z) = h(z)e

α
c
z, where α 6= 0 and h(z) is periodic

entire function of period c.

Theorem 2. Let f(z) be a transcendental entire function of finite order such that f(z) 6≡
f(z+c). Then f(z), f (z + c) and ∆2

cf (z) can not share any finite value a 6= 0 CM. Furthermore,
if a = 0, f(z) must be of the following form f(z) = h(z)e

α
c
z, where α 6= 0 and h(z) is periodic

entire function of period c.

Example 1. The entire function f(z) = exp(z) such that f (z + 1) = ef (z) , ∆2
1f (z) =

(e− 1)2 f (z), and hence f (z) , f (z + 1) and ∆2
1f (z) share 0 CM.

Theorem 3. Let f(z) be a transcendental entire function of finite order such that f(z) 6≡
f(z + c). Then f(z),∆2

cf (z) and ∆2
cf (z + c) can not share any finite value a 6= 0 CM. Fur-

thermore, if a = 0, f(z) must be of the following form f(z) = h(z)e
α
c
z, where α 6= 0 and h(z)

is periodic entire function of period c.

Example 2. The entire function f(z) = exp(z) such that ∆2
1f (z) = (e− 1)2 f (z) ,

∆2
1f (z + 1) = e (e− 1)2 f (z), and hence f (z) , ∆2

1f (z) and ∆2
1f (z + 1) share 0 CM.
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