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In 1987, Guo and Lakshmikantham [1] introduced the notion of coupled fixed point. By
using this notion, Bhaskar and Lakshmikantham [2] gave sufficient conditions to solve some
differential equations by introducing and proving many nice results for coupled fixed points.

In this presentation, we endowed a complete b-fuzzy metric space with a graph. We derive
some new coupled fixed point theorems under some conditions. Then we apply our results to
give sufficient conditions to guarantee an existence of a continuous solution for a system of
fractional differential equation.

Let (X,M, ∗, G) stands to a complete b-fuzzy metric space with constant s ≥ 1 (introducing
by Sedghi and Shobe [3]) such that a ∗ a ≥ a2 and lim

t→∞
M(x, y, t) = 1, endowed with directed

graph G such that V (G) = X, E(G) ⊇ ∆ and G has no parallel edges. Further, we endow the
product space X ×X by another graph denoted also by G, such that

((x, y), (u, v)) ∈ E(G)⇔ (x, u) ∈ E(G) and (v, y) ∈ E(G),

for any (x, y), (u, v) ∈ X ×X.
We denote by Ω the set of function ϕ : R+ → R+ that meets all of the following criteria

1. ϕ is nondecreasing;

2. for all a ∈ R+ and t ∈ R+ we have ϕ(at) = aϕ(t);

3.
∑∞

i=0 ϕ
i(t) converges for all t > 0.

Definition 1. The mapping T : X × X → X is called ϕ-fuzzy contraction if there exist
ϕ ∈ Ω such that

1. for all x, y, u, v ∈ X, T is edge preserving, i.e.,

((x, y), (u, v)) ∈ E(G) then ((T (x, y), T (y, x)), (T (u, v), T (v, u))) ∈ E(G);

2. for all (x, y), (u, v) ∈ X ×X such that ((x, y) , (u, v)) ∈ E(G),

M(T (x, y), T (u, v), ϕ(t)) ≥M(x, u, st)
1
2 ∗M(y, v, st)

1
2 .

We proved the following results.

Theorem 1. On (X,M, ∗), suppose that T is continuous mapping and ϕ-fuzzy contraction
mapping. If there exist x0, y0 ∈ X such that ((x0, y0) , (T (x0, y0), T (y0, x0))) ∈ E(G), then T
possesses a coupled fixed point.

The continuity of T in Theorem 1 can be discarded by adding some new conditions. Assume
that (X, d,G) possess the following property
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1. For any {xn}n∈N inX such that (xn, xn+1) ∈ E(G) and lim
n→+∞

xn = x, then (xn, x) ∈ E(G).

2. For any {xn}n∈N in X such that (xn+1, xn) ∈ E(G) and lim
n→+∞

xn = x then (x, xn) ∈ E(G).

Theorem 2. Endowed (X,M,G) with the previous property. Suppose that T is ϕ-fuzzy
contraction. If there exist x0, y0 ∈ X such that ((x0, y0) , (T (x0, y0), T (y0, x0))) ∈ E(G), then T
possesses a coupled fixed point.

Theorem 3. In addition to the hypothesis of both Theorem 1 and Theorem 2, suppose that
for every (x, y), (x∗, y∗) ∈ X ×X there exists (u, v) ∈ X ×X such that ((x, y), (u, v)) ∈ E(G)
and ((x∗, y∗), (u, v)) ∈ E(G). Then T has unique coupled fixed point.

Then, we studied the existence of a solution to the following system.

Dαx(t) = f(t, x(t), y(t)), Dαy(t) = f(t, y(t), x(t)), t ∈ J, (1)

x(0) = x0 = y(0). (2)

Here the symbol Dα denotes the Caputo fractional derivative of order α ∈ (0, 1), J := [0, L],
f : J × R× R→ R is a given function satisfying the following assumptions

1. f is contionous;

2. For all x, y, u, v ∈ R, with x ≤ u and v ≤ y we have

f(t, x, y) ≤ f(t, u, v), for all t ∈ J ;

3. For each t ∈ J , x, y, u, v ∈ R, x ≤ u and v ≤ y, we have

|f(t, x, y)− f(t, u, v)|2 ≤ 1

8

(
|x− u|2 + |y − v|2

)
;

4. We suppose that K = L2α−1

Γ(α)2
< 1.

Theorem 4. Consider the system (1)-(2) and suppose that the previous assumptions are
satisfied. Assume that there exists (u0, v0) ∈ X ×X such that

u0(t) ≤ x0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, u0(s), v0(s))ds

and

v0(t) ≥ x0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, v0(s), u0(s))ds, t ∈ J.

Then, there exists a unique solution of the system (1)-(2).
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