Coupled Fixed Point Results for nonlinear contraction in b-Fuzzy Metric Space Endowed with Graph with Application

K. Mebarki ${ }^{1}$, A. Boudaoui ${ }^{2}$
${ }^{1}$ Laboratory of Mathematics Modeling and Applications, University of Adrar, Algeria
${ }^{2}$ Laboratory of Mathematics Modeling and Applications, University of Adrar, Algeria kha.mebarki@univ-adrar.edu.dz,ahmedboudaoui@univ-adrar.edu.dz

In 1987, Guo and Lakshmikantham [1] introduced the notion of coupled fixed point. By using this notion, Bhaskar and Lakshmikantham [2] gave sufficient conditions to solve some differential equations by introducing and proving many nice results for coupled fixed points.

In this presentation, we endowed a complete b-fuzzy metric space with a graph. We derive some new coupled fixed point theorems under some conditions. Then we apply our results to give sufficient conditions to guarantee an existence of a continuous solution for a system of fractional differential equation.

Let $(X, M, *, G)$ stands to a complete b-fuzzy metric space with constant $s \geq 1$ (introducing by Sedghi and Shobe [3]) such that $a * a \geq a^{2}$ and $\lim _{t \rightarrow \infty} M(x, y, t)=1$, endowed with directed graph G such that $V(G)=X, E(G) \supseteq \Delta$ and G has no parallel edges. Further, we endow the product space $X \times X$ by another graph denoted also by G, such that

$$
((x, y),(u, v)) \in E(G) \Leftrightarrow(x, u) \in E(G) \text { and }(v, y) \in E(G)
$$

for any $(x, y),(u, v) \in X \times X$.
We denote by Ω the set of function $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$that meets all of the following criteria

1. φ is nondecreasing;
2. for all $a \in \mathbb{R}^{+}$and $t \in \mathbb{R}^{+}$we have $\varphi(a t)=a \varphi(t)$;
3. $\sum_{i=0}^{\infty} \varphi^{i}(t)$ converges for all $t>0$.

Definition 1. The mapping $T: X \times X \rightarrow X$ is called φ-fuzzy contraction if there exist $\varphi \in \Omega$ such that

1. for all $x, y, u, v \in X, T$ is edge preserving, i.e.,

$$
((x, y),(u, v)) \in E(G) \text { then }((T(x, y), T(y, x)),(T(u, v), T(v, u))) \in E(G)
$$

2. for all $(x, y),(u, v) \in X \times X$ such that $((x, y),(u, v)) \in E(G)$,

$$
M(T(x, y), T(u, v), \varphi(t)) \geq M(x, u, s t)^{\frac{1}{2}} * M(y, v, s t)^{\frac{1}{2}}
$$

We proved the following results.
Theorem 1. On $(X, M, *)$, suppose that T is continuous mapping and φ-fuzzy contraction mapping. If there exist $x_{0}, y_{0} \in X$ such that $\left(\left(x_{0}, y_{0}\right),\left(T\left(x_{0}, y_{0}\right), T\left(y_{0}, x_{0}\right)\right)\right) \in E(G)$, then T possesses a coupled fixed point.

The continuity of T in Theorem 1 can be discarded by adding some new conditions. Assume that (X, d, G) possess the following property
http://www.imath.kiev.ua/~young/youngconf2023

1. For any $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in X such that $\left(x_{n}, x_{n+1}\right) \in E(G)$ and $\lim _{n \rightarrow+\infty} x_{n}=x$, then $\left(x_{n}, x\right) \in E(G)$.
2. For any $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in X such that $\left(x_{n+1}, x_{n}\right) \in E(G)$ and $\lim _{n \rightarrow+\infty} x_{n}=x$ then $\left(x, x_{n}\right) \in E(G)$.

Theorem 2. Endowed (X, M, G) with the previous property. Suppose that T is φ-fuzzy contraction. If there exist $x_{0}, y_{0} \in X$ such that $\left(\left(x_{0}, y_{0}\right),\left(T\left(x_{0}, y_{0}\right), T\left(y_{0}, x_{0}\right)\right)\right) \in E(G)$, then T possesses a coupled fixed point.

Theorem 3. In addition to the hypothesis of both Theorem 1 and Theorem 2, suppose that for every $(x, y),\left(x^{*}, y^{*}\right) \in X \times X$ there exists $(u, v) \in X \times X$ such that $((x, y),(u, v)) \in E(G)$ and $\left(\left(x^{*}, y^{*}\right),(u, v)\right) \in E(G)$. Then T has unique coupled fixed point.

Then, we studied the existence of a solution to the following system.

$$
\begin{gather*}
D^{\alpha} x(t)=f(t, x(t), y(t)), \quad D^{\alpha} y(t)=f(t, y(t), x(t)), \quad t \in J \tag{1}\\
x(0)=x_{0}=y(0) \tag{2}
\end{gather*}
$$

Here the symbol D^{α} denotes the Caputo fractional derivative of order $\alpha \in(0,1), J:=[0, L]$, $f: J \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a given function satisfying the following assumptions

1. f is contionous;
2. For all $x, y, u, v \in \mathbb{R}$, with $x \leq u$ and $v \leq y$ we have

$$
f(t, x, y) \leq f(t, u, v), \quad \text { for all } t \in J
$$

3. For each $t \in J, x, y, u, v \in \mathbb{R}, x \leq u$ and $v \leq y$, we have

$$
|f(t, x, y)-f(t, u, v)|^{2} \leq \frac{1}{8}\left(|x-u|^{2}+|y-v|^{2}\right)
$$

4. We suppose that $K=\frac{L^{2 \alpha-1}}{\Gamma(\alpha)^{2}}<1$.

Theorem 4. Consider the system (1)-(2) and suppose that the previous assumptions are satisfied. Assume that there exists $\left(u_{0}, v_{0}\right) \in X \times X$ such that

$$
u_{0}(t) \leq x_{0}+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f\left(s, u_{0}(s), v_{0}(s)\right) d s
$$

and

$$
v_{0}(t) \geq x_{0}+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f\left(s, v_{0}(s), u_{0}(s)\right) d s, t \in J
$$

Then, there exists a unique solution of the system (1)-(2).

1. Guo D., Lakshmikantham V. Coupled fixed points of nonlinear operators with applications. Nonlinear analysis: Theory, Methods and Applications, 1987, 11(5), 623-632.
2. Bhaskar T.G., Lakshmikantham V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Analysis: Theory, Methods and Applications, 2006, 65 (7), 1379-1393.
3. Sedghi S., Shobe N., Park J. Common fixed point theorem in b-fuzzy metric space. Nonlinear Functional Analysis and Applications, 2012, 17(3), 349-359.
