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In this talk we present a new class of operators which is called strictly Lipschitz (p, r, s)-
summing operators, knowing that the linear and the Lipschitz cases were given respectively by
Lapreste and Chavez-Domı̀nguez, presenting also Dominition theorem and several properties.

In the same direction of ideas, we study the strong version of Lipschitz (p, r, s)-summing
linear operators. The linear class has been stated by Lapreste in [3] and generalized to the
Lipschitz case by Chávez-Domı́nguez [1]. Now, we recall the following definition as stated
in [1]. Let X be a pointed metric space and E be a Banach space.

Now, we recall briefly some basic notations and terminology which we need in the sequel.
Throughout this work, the letters E,F will denote Banach spaces and X, Y will denote metric
spaces with a distinguished point (pointed metric spaces) which we denote by 0. Let X be a
pointed metric space, we denote by X# (= Lip0 (X)) the Banach space of all Lipschitz functions
f : X −→ R which vanish at 0 under the Lipschitz norm given by

Lip (f) = sup

{
|f (x)− f (y)|

d (x, y)
: x, y ∈ X, x 6= y

}
.

We denote by F (X) , the Lipschitz-free Banach space over X, the closed linear span of the
linear forms δ(x,y) of Lip0 (X)∗ such that

δ(x,y) (f) = f (x)− f (y) , for every f ∈ Lip0 (X) ,

i.e.,

F (X) = span
{
δ(x,y) : x, y ∈ X

}Lip0(X)∗

.

We have X# = F (X)∗ holds isometrically via the application

QX (f) (m) = m (f) , for every f ∈ X# and m ∈ F (X) .

Let X be a pointed metric space and E be a Banach space, we denote by Lip0 (X;E) the
Banach space of all Lipschitz functions (Lipschitz operators) T : X → E such that T (0) = 0
with pointwise addition and Lipschitz norm. Note that for any T ∈ Lip0 (X;E) , then there
exists a unique linear map (linearization of T ) T̂ : F (X) −→ E such that T̂ ◦ δX = T and∥∥∥T̂∥∥∥ = Lip (T ), where δX is the canonical embedding so that 〈δX (x) , f〉 = δ(x,0) (f) = f (x)

for f ∈ X#.

We denote by lnp (E) the Banach space of all sequences (ei)
n
i=1 in E with the norm

‖(ei)i‖lnp (E) = (
n∑

i=1

‖ei‖p)
1
p ,

and by ln,wp (E) the Banach space of all sequences (ei)
n
i=1 in E with the norm

‖(ei)i‖ln,w
p (E) = sup

e∗∈BE∗
(

n∑
i=1

|〈ei, e∗〉|p)
1
p .
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Definition 1. Let 0 < p, r, s <∞ with 1
p
≤ 1

r
+ 1

s
, X be a pointed metric space and E be

a Banach space. Let T : X → E be a Lipschitz map. T is Lipschitz (p, r, s)-summing if there
is a constant C > 0 such that for any n ∈ N∗, (xi)i , (yi)i in X, (e

∗
i )i in E

∗ and (λi)i , (ki)i in R∗+
(1 ≤ i ≤ n), we have

‖(λi 〈T (xi)− T (yi) , e
∗
i 〉)i‖lnp ≤ CwLip

r

((
λik
−1
i , xi, yi

)
i

)
‖(kie∗i )i‖ln,w

s (E∗) , (1)

where wLip
r

((
λik
−1
i , xi, yi

)n
i=1

)
is the weak Lipschitz p-norm defined by

wLip
r ((λi, xi, yi)

n
i=1) = sup

f∈B
X#

(
n∑

i=1

|λi (f (xi)− f (yi))|r)
1
r

=
∥∥(λiδ(xi,yi)

)∥∥
ln,w
r (F(X))

.

We denote by ΠL
p,r,s (X,E) the Banach space of all Lipschitz (p, r, s)-summing operators with

the norm πL
p,r,s(T ) which is the smallest constant C such that inequality (1) holds.

Definition 2. Let 0 < p, r, s < ∞ such that 1
p
≤ 1

r
+ 1

s
. Let X be a pointed metric space

and E be a Banach space. The Lipschitz operator T : X → E is strictly Lipschitz (p, r, s)-
summing if there is a constant C > 0 such that for any n1 ∈ N∗, n2 ∈ N∗,

(
xji
)n1

i=1
,
(
yji
)n1

i=1
⊂ X,(

λji
)n1

i=1
⊂ K (j = 1, ..., n2) and any e∗1, ..., e∗n1

∈ E∗, we have

(

n1∑
i=1

∣∣∣∣∣
〈

n2∑
j=1

λji (T (xji )− T (yji )), e
∗
i

〉∣∣∣∣∣
p

)
1
p ≤ C sup

f∈B
X#

(

n1∑
i=1

∣∣∣∣∣
n2∑
j=1

λji (f(xji )− f(yji ))

∣∣∣∣∣
r

)
1
r ‖(e∗i )‖ln1w

s (E∗) .

(2)
The class of all strictly Lipschitz (p, r, s)-summing operators from X into E is denoted by
ΠSL

p,r,s (X,E), which is a Banach space with the norm πSL
p,r,s(T ) which is the smallest constant C

such that inequality (2) holds.

Theorem 1. Let 0 < p, r, s < ∞ with 1
p

= 1
r

+ 1
s
. Let X be a pointed metric space and

E be a Banach space. Let T : X → E be a Lipschitz operator. The following properties are
equivalent

1. T is strictly Lipschitz (p, r, s)-summing.

2. T̂ is (p, r, s)-summing. In this case we have

πp,r,s

(
T̂
)

= πSL
p,r,s (T ) .
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