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We study a Darboux transformation of the symmetric Jacobi matrix J associated with the
Toda lattice. We find factorization of the Jacobi matrix J , i.e J = UL, where L and U are the
lower and upper triangular two-diagonal matrices, respectively. Darboux transformation of J
was found, one is the symmetric Jacobi matrix J (d) = LU, which is associated with the another
Toda lattice.

Definition 1. The Toda lattice is a system of differential equations

x′′n(t) = exn−1−xn − exn−xn+1 , n ∈ N, (1)

which was introduced in [1].

We investigate the semi-infinite system with x1 = −∞. The Flaschka variables are defined
by

a2k = exk−1−xk and bk = −x′k (2).

Therefore, we obtain the following system in terms of the Flaschka variables

(a2k)
′ = a2k(bk − bk−1) and b′k = 2(a2k+1 − a2k), a0 = 0 (3).

On the other hand, the symmetric Jacobi matrix J associated with the Toda lattice, which
is defined by

J =


b0 a1
a1 b1 a2

a2 b2
. . .

. . . . . .

 .

Theorem 1. Let J be the symmetric Jacobi matrix and let S0 be a some real parameter.
Then J admits the following UL–factorization

J = UL,

where L and U are the lower and upper triangular matrices, respectively, which are defined by

L =



1
S0 + b0

a1
1

S1 + b1

a2
1

. . . . . .


and U =


−S0 a1

−S1 a2

−S2
. . .
. . .

 ,

if and only if the following system is solvable

Si(Si−1 + bi−1) = −a2i , Si−1 + bi−1 6= 0 and Si−1 6= 0, for all i ∈ N.
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Definition 2. Let the symmetric Jacobi matrix J admit UL – factorization. Then a trans-
formation

J = UL→ LU = J (d)

is called a Darboux transformation with parameter of the Jacobi matrix J.

Theorem 2. Let the symmetric Jacobi matrix J admit UL with parameter S0 ∈ R\{0,−b0}.
Then the Darboux transformation with parameter of the Jacobi matrix J is the symmetric Jacobi
matrix

J (d) =


−S0 a1
a1 b0 a2

a2 b1
. . .

. . . . . .


if and only if

S0 = Si for all i ∈ N.

Theorem 3. Let the symmetric Jacobi matrix J admit UL–factorization and J be associated
with the Toda lattice (1)–(3). Let the symmetric Jacobi matrix J (d) = LU be the Darboux
transformation without parameter of J . Then J (d) is associated with the following Toda lattice

x′′k(t) = exk−1−xk − exk−xk+1 ,

a2k = exk−1−xk , S0 = x′0 and bk−1 = −x′k.

a0 = 0, (a21)
′ = a21(b0 + S0), (a2k)

′ = a2k(bk+1 − bk),

− S ′0 = 2(a21 − a20) and b′k−1 = 2(a2k+1 − a2k), k ∈ N.
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