DARBOUX TRANSFORMATION OF THE GENERALIZED JACOBI MATRICES AND TODA LATTICE

O. Levina
Mykhailo Dragomanov Ukrainian State University, Kyiv, Ukraine
alex098345@gmail.com

We study a Darboux transformation of the symmetric Jacobi matrix J associated with the Toda lattice. We find factorization of the Jacobi matrix J, i.e $J=\mathfrak{U} \mathfrak{L}$, where \mathfrak{L} and \mathfrak{U} are the lower and upper triangular two-diagonal matrices, respectively. Darboux transformation of J was found, one is the symmetric Jacobi matrix $J^{(d)}=\mathfrak{L U}$, which is associated with the another Toda lattice.

Definition 1. The Toda lattice is a system of differential equations

$$
\begin{equation*}
x_{n}^{\prime \prime}(t)=e^{x_{n-1}-x_{n}}-e^{x_{n}-x_{n+1}}, \quad n \in \mathbb{N} \tag{1}
\end{equation*}
$$

which was introduced in [1].
We investigate the semi-infinite system with $x_{1}=-\infty$. The Flaschka variables are defined by

$$
\begin{equation*}
a_{k}^{2}=e^{x_{k-1}-x_{k}} \quad \text { and } \quad b_{k}=-x_{k}^{\prime} \tag{2}
\end{equation*}
$$

Therefore, we obtain the following system in terms of the Flaschka variables

$$
\begin{equation*}
\left(a_{k}^{2}\right)^{\prime}=a_{k}^{2}\left(b_{k}-b_{k-1}\right) \quad \text { and } \quad b_{k}^{\prime}=2\left(a_{k+1}^{2}-a_{k}^{2}\right), \quad a_{0}=0 \tag{3}
\end{equation*}
$$

On the other hand, the symmetric Jacobi matrix J associated with the Toda lattice, which is defined by

$$
J=\left(\begin{array}{cccc}
b_{0} & a_{1} & & \\
a_{1} & b_{1} & a_{2} & \\
& a_{2} & b_{2} & \ddots \\
& & \ddots & \ddots
\end{array}\right)
$$

Theorem 1. Let J be the symmetric Jacobi matrix and let S_{0} be a some real parameter. Then J admits the following $\mathfrak{U L}$-factorization

$$
J=\mathfrak{U} \mathfrak{L}
$$

where \mathfrak{L} and \mathfrak{U} are the lower and upper triangular matrices, respectively, which are defined by

$$
\mathfrak{L}=\left(\begin{array}{cccc}
1 & & & \\
\frac{S_{0}+b_{0}}{a_{1}} & 1 & & \\
& \frac{S_{1}+b_{1}}{a_{2}} & 1 & \\
& & \ddots & \ddots
\end{array}\right) \quad \text { and } \quad \mathfrak{U}=\left(\begin{array}{cccc}
-S_{0} & a_{1} & & \\
& -S_{1} & a_{2} & \\
& & -S_{2} & \ddots \\
& & & \ddots .
\end{array}\right)
$$

if and only if the following system is solvable

$$
S_{i}\left(S_{i-1}+b_{i-1}\right)=-a_{i}^{2}, \quad S_{i-1}+b_{i-1} \neq 0 \quad \text { and } \quad S_{i-1} \neq 0, \text { for all } i \in \mathbb{N}
$$

Definition 2. Let the symmetric Jacobi matrix J admit $\mathfrak{U L}$ - factorization. Then a transformation

$$
J=\mathfrak{U} \mathfrak{L} \rightarrow \mathfrak{L} \mathfrak{U}=J^{(d)}
$$

is called a Darboux transformation with parameter of the Jacobi matrix J.
Theorem 2. Let the symmetric Jacobi matrix J admit $\mathfrak{U} \mathfrak{L}$ with parameter $S_{0} \in \mathbb{R} \backslash\left\{0,-b_{0}\right\}$. Then the Darboux transformation with parameter of the Jacobi matrix J is the symmetric Jacobi matrix

$$
J^{(d)}=\left(\begin{array}{cccc}
-S_{0} & a_{1} & & \\
a_{1} & b_{0} & a_{2} & \\
& a_{2} & b_{1} & \ddots \\
& & \ddots & \ddots
\end{array}\right)
$$

if and only if

$$
S_{0}=S_{i} \quad \text { for all } i \in \mathbb{N}
$$

Theorem 3. Let the symmetric Jacobi matrix J admit $\mathfrak{U L}$-factorization and J be associated with the Toda lattice (1)-(3). Let the symmetric Jacobi matrix $J^{(d)}=\mathfrak{L U}$ be the Darboux transformation without parameter of J. Then $J^{(d)}$ is associated with the following Toda lattice

$$
\begin{gathered}
x_{k}^{\prime \prime}(t)=e^{x_{k-1}-x_{k}}-e^{x_{k}-x_{k+1}}, \\
a_{k}^{2}=e^{x_{k-1}-x_{k}}, \quad S_{0}=x_{0}^{\prime} \quad \text { and } \quad b_{k-1}=-x_{k}^{\prime} . \\
a_{0}=0, \quad\left(a_{1}^{2}\right)^{\prime}=a_{1}^{2}\left(b_{0}+S_{0}\right), \quad\left(a_{k}^{2}\right)^{\prime}=a_{k}^{2}\left(b_{k+1}-b_{k}\right), \\
-S_{0}^{\prime}=2\left(a_{1}^{2}-a_{0}^{2}\right) \quad \text { and } \quad b_{k-1}^{\prime}=2\left(a_{k+1}^{2}-a_{k}^{2}\right), \quad k \in \mathbb{N} .
\end{gathered}
$$

1. Toda M. Theory of Nonlinear Lattices. Springer Series in Solid-State Sciences, 20 (2 ed.), Springer, Berlin, 1989.
