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In this talk, we are going to give a generalization of Leray-Schauder fixed point theorem in
Generalized Banach spaces for non-self set contractive mappings defined in non-convex domains
via the vector valued measure of noncompactness tool. Let us begin with the definition of
generalized Banach space.

Definition 1. Let E be a vector space on K = R or C. By a generalized norm on E we
mean a map

‖ · ‖G : E −→ Rn
+

% 7→ ‖%‖G =
(
‖%‖1, · · · , ‖%‖n

)n
satisfying the following properties:

(i) For all % ∈ E ; if ‖%‖G = 0Rn
+
, then % = 0,

(ii) ‖λ%‖G = |λ|‖%‖G for all % ∈ E and λ ∈ K, and
(iii) ‖%+ y‖G 4 ‖%‖G + ‖y‖G for all %, y ∈ E .
The pair (E , ‖ · ‖G) is called a vector (generalized) normed space. Furthermore, (E , ‖ · ‖G) is
called a generalized Banach space (in short, GBS), if the vector metric space generated by its
vector metric is complete.

Definition 2. Let (E , ‖ · ‖G) be a GBS and let BG(E) be the family of G-bounded subsets
of E . A map

µG : BG(E) −→ [0,+∞)n

A 7→ µG(A) =
(
µ1(A), · · · , µn(A)

)T
is called a generalized measure of noncompactness (for short G-MNC) defined on E if it satisfies
the following conditions:
(i) The family KerµG(E) = {A ∈ BG(E) : µG(A) = 0} is nonempty and KerµG(E) ⊂ NG(E).
(ii) Monotonicity: A1 ⊆ A2 ⇒ µG(A1) 4 µG(A2), for all A1, A2 ∈ BG(E).
(iii) Invariance under closure and convex hull: µG(A) = µG(A) = µG(co(A)), for allA ∈ BG(E).
(iv) Convexity: µG(λA1 + (1− λ)A2) 4 λµG(A1) + (1− λ)µG(A2), for all A1, A2 ∈ BG(E) and
λ ∈ [0, 1].
(v) Generalized Cantor intersection property: If (Am)m≥1 is a sequence of nonempty, closed
subsets of E such that A1 is G-bounded and A1 ⊇ A2 ⊇ . . . ⊇ Am . . ., and limm→+∞µG (Am) =
0Rn

+
, then the set A∞ :=

⋂∞
m=1Am is nonempty and is G-compact.

Moreover, we say that µG is:
(vi) Semi-additive if µG(A1 ∪ A2) = max {µG(A1) + µG(A2)} , for all A1, A2 ∈ BG(E).

Definition 3 ([2]). Let E be a GBS and let K ⊂ E be an open G-bounded, with 0 ∈ K. We
say that K is strictly star-shaped with respect to 0 if for all % ∈ ∂K, {t% : t > 0} ∩ ∂K = {%}.

http://www.imath.kiev.ua/~young/youngconf2023



International Conference of Young Mathematicians
The Institute of Mathematics of the National Academy of Sciences of Ukraine

June 1–3, 2023, Kyiv, Ukraine

Definition 4. A matrix M ∈ Mn×n(R+) is said to be convergent to zero if Mm −→
0, as m −→∞.

Definition 5. Let (E , ‖·‖G) be a GBS and let µG be a G-MNC. A self-mapping N : E −→ E
is said to be satisfies the generalized Darbo condition with respect to µG if N maps G-bounded
operators, and there exists a matrix M ∈Mn×n(R+) converges to zero such that
µG(N(A)) 4MµG(A), for every A ∈ BG(E).

Now, we state and prove our main results.

Theorem 1 ([1]). Let E be a GBS, µG be a semi-additive G-MNC, K ⊂ E be a G-bounded,
strictly star-shaped open neighborhood of zero and let N : K → E be a continuous operator
satisfies the generalized Darbo condition with a matrix M . If N satisfies the Leray-Schauder
boundary condition, then N has at least one fixed point.

By using the above fixed point result, we prove the existence of solutions for the following
coupled system of nonlinear integral operators :

%1(τ) =

∫ τ

0

κ1(τ, σ)l1(τ, σ, %1(σ), %2(σ))dσ,

%2(τ) =

∫ τ

0

κ2(τ, σ)l2(τ, σ, %1(σ), %2(σ))dσ.

(1)

In GBS E = C(J,R) × C(J,R) of all couple of continuous functions on J = [0, b], 0 < b < ∞.
where, the functions κ1, κ2, l1, l2 are given and verify the next assumptions

(H1) κ1, κ2 : J × J −→ R are continuous, and there exists constants ξi ∈ R+
∗ such that

|κi(τ, σ)| ≤ ξi for all (τ, σ) ∈ J2.

(H2) The functions l1, l2, : J × J × R× R −→ R such that

(a) For an arbitrary fixed and % = (%1, %2) ∈ R×R, the function (τ, σ)→ li(τ, σ, %1, %2),
i = 1, 2 is continuous on J̄ × J̄ ,

(b) There exists a matrix M =

(
a11 a12
a21 a22

)
∈ M2×2 (R+) such that for each

(τ, σ, %1, %2) , (τ, σ, %̄1, %̄2) ∈ J × J × R× R and for i ∈ {1, 2}, we have

|li (τ, σ, %1, %2)− li (τ, σ, %̄1, %̄2) | ≤ ai1 |%1 − %̄1|+ ai2 |%2 − %̄2| .

Theorem 2. Suppose that the assumptions (H1) and (H2) are satisfied. Assume that there
is R ∈ R2

+ and u, v ∈ B(0, R) ⊂ E , such that for each i = 1, 2 one of the following inequality
holds

‖ui‖∞ < Ri − ξiαib, ‖vi‖∞ < Ri − ξiαib,
where αi = (R1ai,1+R2ai,2)+sup(ι,ς)∈J2 |li(ι, ς, 0, 0)|. Then, the SIE (1) has at least one solution.
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