Fixed point theorem for non self operators on Strictly Star Shaped Sets of Generalized Banach Spaces and applications

Noura Laksaci ${ }^{1}$, Ahmed Boudaoui ${ }^{2}$

${ }^{1}$ Laboratory of Mathematics Modeling and Applications. University of Adrar, Algeria.
${ }^{2}$ Laboratory of Mathematics Modeling and Applications, University of Adrar, Algeria. nor.laksaci@univ-adrar.edu.dz,ahmedboudaoui@univ-adrar.edu.dz

In this talk, we are going to give a generalization of Leray-Schauder fixed point theorem in Generalized Banach spaces for non-self set contractive mappings defined in non-convex domains via the vector valued measure of noncompactness tool. Let us begin with the definition of generalized Banach space.

Definition 1. Let \mathcal{E} be a vector space on $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. By a generalized norm on \mathcal{E} we mean a map

$$
\begin{aligned}
\|\cdot\|_{G}: & \mathcal{E}
\end{aligned}>\mathbb{R}_{+}^{n} \quad \begin{aligned}
\varrho & \mapsto \varrho \|_{G}=\left(\|\varrho\|_{1}, \cdots,\|\varrho\|_{n}\right)^{n}
\end{aligned}
$$

satisfying the following properties:
(i) For all $\varrho \in \mathcal{E}$; if $\|\varrho\|_{G}=0_{\mathbb{R}_{+}^{n}}$, then $\varrho=0$,
(ii) $\|\lambda \varrho\|_{G}=|\lambda|\|\varrho\|_{G}$ for all $\varrho \in \mathcal{E}$ and $\lambda \in \mathbb{K}$, and
(iii) $\|\varrho+y\|_{G} \preccurlyeq\|\varrho\|_{G}+\|y\|_{G}$ for all $\varrho, y \in \mathcal{E}$.

The pair $\left(\mathcal{E},\|\cdot\|_{G}\right)$ is called a vector (generalized) normed space. Furthermore, $\left(\mathcal{E},\|\cdot\|_{G}\right)$ is called a generalized Banach space (in short, GBS), if the vector metric space generated by its vector metric is complete.

Definition 2. Let $\left(\mathcal{E},\|\cdot\|_{G}\right)$ be a GBS and let $\mathcal{B}_{G}(\mathcal{E})$ be the family of G-bounded subsets of \mathcal{E}. A map

$$
\begin{aligned}
\mu_{G}: & \mathcal{B}_{G}(\mathcal{E}) \longrightarrow[0,+\infty)^{n} \\
& \mathcal{A} \mapsto \mu_{G}(\mathcal{A})=\left(\mu_{1}(\mathcal{A}), \cdots, \mu_{n}(\mathcal{A})\right)^{T}
\end{aligned}
$$

is called a generalized measure of noncompactness (for short G-MNC) defined on \mathcal{E} if it satisfies the following conditions:
(i) The family $\operatorname{Ker} \mu_{G}(\mathcal{E})=\left\{\mathcal{A} \in \mathcal{B}_{G}(\mathcal{E}): \mu_{G}(\mathcal{A})=0\right\}$ is nonempty and $\operatorname{Ker} \mu_{G}(\mathcal{E}) \subset \mathcal{N}_{G}(\mathcal{E})$.
(ii) Monotonicity: $\mathcal{A}_{1} \subseteq \mathcal{A}_{2} \Rightarrow \mu_{G}\left(\mathcal{A}_{1}\right) \preccurlyeq \mu_{G}\left(\mathcal{A}_{2}\right)$, for all $\mathcal{A}_{1}, \mathcal{A}_{2} \in \mathcal{B}_{G}(\mathcal{E})$.
(iii) Invariance under closure and convex hull: $\mu_{G}(\mathcal{A})=\mu_{G}(\overline{\mathcal{A}})=\mu_{G}(\operatorname{co}(\mathcal{A}))$, for all $\mathcal{A} \in \mathcal{B}_{G}(\mathcal{E})$.
(iv) Convexity: $\mu_{G}\left(\lambda \mathcal{A}_{1}+(1-\lambda) \mathcal{A}_{2}\right) \preccurlyeq \lambda \mu_{G}\left(\mathcal{A}_{1}\right)+(1-\lambda) \mu_{G}\left(\mathcal{A}_{2}\right)$, for all $\mathcal{A}_{1}, \mathcal{A}_{2} \in \mathcal{B}_{G}(\mathcal{E})$ and $\lambda \in[0,1]$.
(v) Generalized Cantor intersection property: If $\left(\mathcal{A}_{m}\right)_{m>1}$ is a sequence of nonempty, closed subsets of \mathcal{E} such that \mathcal{A}_{1} is G-bounded and $\mathcal{A}_{1} \supseteq \mathcal{A}_{2} \supseteq \ldots \supseteq \mathcal{A}_{m} \ldots$, and $\lim _{m \rightarrow+\infty} \mu_{G}\left(\mathcal{A}_{m}\right)=$ $0_{\mathbb{R}_{+}^{n}}$, then the set $\mathcal{A}_{\infty}:=\bigcap_{m=1}^{\infty} \mathcal{A}_{m}$ is nonempty and is G-compact.
Moreover, we say that μ_{G} is:
(vi) Semi-additive if $\mu_{G}\left(\mathcal{A}_{1} \cup \mathcal{A}_{2}\right)=\max \left\{\mu_{G}\left(\mathcal{A}_{1}\right)+\mu_{G}\left(\mathcal{A}_{2}\right)\right\}$, for all $\mathcal{A}_{1}, \mathcal{A}_{2} \in \mathcal{B}_{G}(\mathcal{E})$.

Definition 3 ([2]). Let \mathcal{E} be a GBS and let $\mathcal{K} \subset \mathcal{E}$ be an open G-bounded, with $0 \in \mathcal{K}$. We say that \mathcal{K} is strictly star-shaped with respect to 0 if for all $\varrho \in \partial \mathcal{K},\{t \varrho: t>0\} \cap \partial \mathcal{K}=\{\varrho\}$.
http://www.imath.kiev.ua/~young/youngconf2023

Definition 4. A matrix $M \in \mathcal{M}_{n \times n}\left(\mathbb{R}_{+}\right)$is said to be convergent to zero if $M^{m} \longrightarrow$ 0 , as $m \longrightarrow \infty$.

Definition 5. Let $\left(\mathcal{E},\|\cdot\|_{G}\right)$ be a GBS and let μ_{G} be a G-MNC. A self-mapping $N: \mathcal{E} \longrightarrow \mathcal{E}$ is said to be satisfies the generalized Darbo condition with respect to μ_{G} if N maps G-bounded operators, and there exists a matrix $M \in \mathcal{M}_{n \times n}\left(\mathbb{R}^{+}\right)$converges to zero such that $\mu_{G}(N(\mathcal{A})) \preccurlyeq M \mu_{G}(\mathcal{A})$, for every $\mathcal{A} \in \mathcal{B}_{G}(\mathcal{E})$.

Now, we state and prove our main results.
Theorem 1 ([1]). Let \mathcal{E} be a $G B S, \mu_{G}$ be a semi-additive G-MNC, $\mathcal{K} \subset \mathcal{E}$ be a G-bounded, strictly star-shaped open neighborhood of zero and let $N: \overline{\mathcal{K}} \rightarrow \mathcal{E}$ be a continuous operator satisfies the generalized Darbo condition with a matrix M. If N satisfies the Leray-Schauder boundary condition, then N has at least one fixed point.

By using the above fixed point result, we prove the existence of solutions for the following coupled system of nonlinear integral operators:

$$
\left\{\begin{array}{l}
\varrho_{1}(\tau)=\int_{0}^{\tau} \kappa_{1}(\tau, \sigma) l_{1}\left(\tau, \sigma, \varrho_{1}(\sigma), \varrho_{2}(\sigma)\right) d \sigma \tag{1}\\
\varrho_{2}(\tau)=\int_{0}^{\tau} \kappa_{2}(\tau, \sigma) l_{2}\left(\tau, \sigma, \varrho_{1}(\sigma), \varrho_{2}(\sigma)\right) d \sigma
\end{array}\right.
$$

In GBS $\mathcal{E}=\mathcal{C}(J, \mathbb{R}) \times \mathcal{C}(J, \mathbb{R})$ of all couple of continuous functions on $J=[0, b], 0<b<\infty$. where, the functions $\kappa_{1}, \kappa_{2}, l_{1}, l_{2}$ are given and verify the next assumptions
$\left(\mathcal{H}_{1}\right) \kappa_{1}, \kappa_{2}: J \times J \longrightarrow \mathbb{R}$ are continuous, and there exists constants $\xi_{i} \in \mathbb{R}_{*}^{+}$such that

$$
\left|\kappa_{i}(\tau, \sigma)\right| \leq \xi_{i} \quad \text { for all }(\tau, \sigma) \in J^{2}
$$

$\left(\mathcal{H}_{2}\right)$ The functions $l_{1}, l_{2},: J \times J \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ such that
(a) For an arbitrary fixed and $\varrho=\left(\varrho_{1}, \varrho_{2}\right) \in \mathbb{R} \times \mathbb{R}$, the function $(\tau, \sigma) \rightarrow l_{i}\left(\tau, \sigma, \varrho_{1}, \varrho_{2}\right)$, $i=1,2$ is continuous on $\bar{J} \times \bar{J}$,
(b) There exists a matrix $M=\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in \mathcal{M}_{2 \times 2}\left(\mathbb{R}_{+}\right)$such that for each $\left(\tau, \sigma, \varrho_{1}, \varrho_{2}\right),\left(\tau, \sigma, \varrho_{1}, \varrho_{2}\right) \in J \times J \times \mathbb{R} \times \mathbb{R}$ and for $i \in\{1,2\}$, we have

$$
\left|l_{i}\left(\tau, \sigma, \varrho_{1}, \varrho_{2}\right)-l_{i}\left(\tau, \sigma, \varrho_{1}, \bar{\varrho}_{2}\right)\right| \leq a_{i 1}\left|\varrho_{1}-\bar{\varrho}_{1}\right|+a_{i 2}\left|\varrho_{2}-\bar{\varrho}_{2}\right|
$$

Theorem 2. Suppose that the assumptions $\left(\mathcal{H}_{1}\right)$ and $\left(\mathcal{H}_{2}\right)$ are satisfied. Assume that there is $R \in \mathbb{R}_{+}^{2}$ and $u, v \in B(0, R) \subset \mathcal{E}$, such that for each $i=1,2$ one of the following inequality holds

$$
\left\|u_{i}\right\|_{\infty}<R_{i}-\xi_{i} \alpha_{i} b, \quad\left\|v_{i}\right\|_{\infty}<R_{i}-\xi_{i} \alpha_{i} b
$$

where $\alpha_{i}=\left(R_{1} a_{i, 1}+R_{2} a_{i, 2}\right)+\sup _{(\iota, \varsigma) \in J^{2}}\left|l_{i}(\iota, \varsigma, 0,0)\right|$. Then, the SIE (1) has at least one solution.

1. N. Laksaci, A. Boudaoui, and B. Krichen. Fixed point theorems for non-self mappings on strictly star-shaped sets in generalized Banach spaces. Ricerche di Matematica, 2023, 1-21.
2. A. Jiménez-Melado and C. Morales. Fixed point theorems under the interior condition. Proceedings of the American Mathematical Society, 2006, 134(2), 501-507.
