(p, q)-PSEUDOSPECTRUM AND (p, q)-CONDITION SPECTRUM

 M. Z. Kolundžija ${ }^{1}$

 M. Z. Kolundžija ${ }^{1}$
 ${ }^{1}$ University of Niš, Faculty of Sciences and Mathematics, Department of Mathematics, Višegradska 33, 18000 Niš, Serbia mkolundzija@pmf.ni.ac.rs, milica.kolundzija@gmail.com

We introduce the (p, q)-pseudospectrum and (p, q)-condition spectrum of an element in Banach algebra, and show their properties for an element represented as a block matrix.

Let \mathcal{A} be a complex Banach algebra with the unit 1 . We use $\mathcal{A}^{-1}, \mathcal{A}^{\bullet}$, and $\sigma(a)$ to denote the set of all invertible and idempotent elements in \mathcal{A}, and the spectrum of a, respectively.

We can represent an element of Banach algebra in a block matrix form as follows.
Let $u \in \mathcal{A}^{\bullet}$. Then we can represent an element $a \in \mathcal{A}$ as $a=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]_{u}$, where $a_{11}=u a u$, $a_{12}=u a(1-u), a_{21}=(1-u) a u, a_{22}=(1-u) a(1-u)$. Note that $u \mathcal{A} u$ and $(1-u) \mathcal{A}(1-u)$ are Banach algebras with the units u and $1-u$, respectively. In the following text, we will consider diagonal matrix representation

$$
\left[\begin{array}{ll}
a & 0 \tag{1}\\
0 & b
\end{array}\right]_{u} .
$$

An element $a \in \mathcal{A}$ is outer generalized invertible, if there exists some $b \in \mathcal{A}$ satisfying $b=b a b$. Such b is called the outer generalized inverse of a. In this case $b a$ and $1-a b$ are idempotents corresponding to a and b. The set of all outer generalized invertible elements of \mathcal{A} will be denoted with $\mathcal{A}^{(2)}$.

The outer generalized inverses with prescribed idempotents were defined in [1] as follows: Let $a \in \mathcal{A}$ and $p, q \in \mathcal{A}^{\bullet}$. An element $b \in \mathcal{A}$ satisfying $b a b=b, b a=p, 1-a b=q$, will be called a (p, q)-outer generalized inverse of a, written $a_{p, q}^{(2)}=b$. If $a_{p, q}^{(2)}$ exists, then it is unique. The set of all outer generalized invertible elements of \mathcal{A} with prescribed idempotents $p, q \in \mathcal{A}^{\bullet}$ will be denoted with $\mathcal{A}_{p, q}^{(2)}$.
The pseudospectrum and the condition spectrum were defined and studied in [3] and [4]:

- Pseudospectrum [4]: Let $\varepsilon>0$. The ε-pseudospectrum of an element $a \in \mathcal{A}$ is defined as $\Lambda_{\varepsilon}(a)=\left\{z \in \mathbb{C} \mid a-z \notin \mathcal{A}^{-1}\right.$ or $\left.\|(a-z)^{-1}| | \geq \varepsilon^{-1}\right\}$.
- Condition spectrum [3]: Let $0<\varepsilon<1$. The ε-condition spectrum of an element $a \in \mathcal{A}$ is defined as $\sigma_{\varepsilon}(a)=\left\{z \in \mathbb{C} \mid a-z \notin \mathcal{A}^{-1}\right.$ or $\left.\left\|(a-z)^{-1}\right\| \cdot\|a-z\| \geq \varepsilon^{-1}\right\}$.

We generalize the pseudospectrum and the condition spectrum by defining the (p, q) pseudospectrum and the (p, q)-condition spectrum as follows:

Definition 1. ((p, q)-pseudospectrum) Let $\varepsilon>0$. The (p, q) - ε-pseudospectrum of an element $a \in \mathcal{A}$ is defined as $\Lambda_{\varepsilon}(a)=\left\{z \in \mathbb{C} \mid a-z \notin \mathcal{A}_{p, q}^{(2)}\right.$ or $\left.\left\|(a-z)_{p, q}^{(2)}\right\| \geq \varepsilon^{-1}\right\}$.

Definition 2. ((p, q)-condition spectrum) Let $0<\varepsilon<1$. The $(p, q)-\varepsilon$-condition spectrum of $a \in \mathcal{A}$ is defined as $\sigma_{(p, q)-\varepsilon}(a)=\left\{z \in \mathbb{C} \mid a-z \notin \mathcal{A}_{p, q}^{(2)}\right.$ or $\left.\left\|(a-z)_{p, q}^{(2)}\right\| \cdot\|a-z\| \geq \varepsilon^{-1}\right\}$.

Now, we state the auxiliary results.

Lemma 1. Let x be as in (1), $p_{1}, q_{1} \in(u \mathcal{A} u)^{\bullet}$ and $p_{2}, q_{2} \in((1-u) \mathcal{A}(1-u))^{\bullet}$ and let $p=p_{1}+p_{2} \in \mathcal{A}$ and $q=q_{1}+q_{2} \in \mathcal{A}$. Then $x \in \mathcal{A}_{p, q}^{(2)}$ if and only if $a \in(u \mathcal{A} u)_{p_{1}, q_{1}}^{(2)}$ and $b \in((1-u) \mathcal{A}(1-u))_{p_{2}, q_{2}}^{(2)}$. If $x \in \mathcal{A}_{p, q}^{(2)}$, then $x_{p, q}^{(2)}=\left[\begin{array}{cc}a_{p_{1}, q_{1}}^{(2)} & 0 \\ 0 & b_{p_{2}, q_{2}}^{(2)}\end{array}\right]_{u}$.
As a corollary, we have the result for the invertibility of an element represented as in (1).
Lemma 2. Let x be as in (1). Then $x \in \mathcal{A}^{-1}$ if and only if $a \in(u \mathcal{A} u)^{-1}$ and $b \in$ $((1-u) \mathcal{A}(1-u))^{-1}$. If $x \in \mathcal{A}^{-1}$, then $x^{-1}=\left[\begin{array}{cc}a^{-1} & 0 \\ 0 & b^{-1}\end{array}\right]_{u}$.

Therefore, it holds $\sigma(x)=\sigma(a) \cup \sigma(b)$ for the spectrum of an element x represented as in (1).
We investigate whether the similar property holds for the (p, q)-pseudospectrum and the (p, q)-condition spectrum. It turned out that this property depends on the norm used in Banach algebra for the elements represented as in (1).

Theorem 1. Let x be as in (1) with the norm $\|x\|_{\infty}=\max \{\|a\|,\|b\|\}, \varepsilon>0, p_{1}, q_{1} \in$ $(u \mathcal{A} u)^{\bullet}$ and $p_{2}, q_{2} \in((1-u) \mathcal{A}(1-u))^{\bullet}$ and let $p=p_{1}+p_{2} \in \mathcal{A}$ and $q=q_{1}+q_{2} \in \mathcal{A}$. Then $\Lambda_{\left(p_{1}, q_{1}\right)-\varepsilon}(a) \cup \Lambda_{\left(p_{2}, q_{2}\right)-\varepsilon}(b)=\Lambda_{(p, q)-\varepsilon}(x)$.

Theorem 2. Let x be as in (1) with the norm $\|x\|_{1}=\|a\|+\|b\|, \varepsilon>0, p_{1}, q_{1} \in(u \mathcal{A} u)^{\bullet}$ and $p_{2}, q_{2} \in((1-u) \mathcal{A}(1-u))^{\bullet}$ and let $p=p_{1}+p_{2} \in \mathcal{A}$ and $q=q_{1}+q_{2} \in \mathcal{A}$. Then $\Lambda_{\left(p_{1}, q_{1}\right)-\varepsilon}(a) \cup \Lambda_{\left(p_{2}, q_{2}\right)-\varepsilon}(b) \subset \Lambda_{(p, q)-\varepsilon}(x)$.

The following theorem holds whether we consider the norm $\|\cdot\|_{\infty}$ or the norm $\|\cdot\|_{1}$.
Theorem 3. Let x be as in (1), $0<\varepsilon<1, p_{1}, q_{1} \in(u \mathcal{A} u)^{\bullet}$ and $p_{2}, q_{2} \in((1-u) \mathcal{A}(1-u))^{\bullet}$ and let $p=p_{1}+p_{2} \in \mathcal{A}$ and $q=q_{1}+q_{2} \in \mathcal{A}$. Then $\sigma_{\left(p_{1}, q_{1}\right)-\varepsilon}(a) \cup \sigma_{\left(p_{2}, q_{2}\right)-\varepsilon}(b) \subset \sigma_{(p, q)-\varepsilon}(x)$.

The next example shows that the converse inclusion is not true in the previous theorem.
Example 1. Let $0<\varepsilon<1, z \in \mathbb{C}$ and $u \in \mathcal{A}^{\bullet}$ such that $\|u\|<\frac{1}{\sqrt{\varepsilon}}$ and $\|1-u\|<\frac{1}{\sqrt{\varepsilon}}$. Let $x=\left[\begin{array}{cc}\left(\varepsilon^{2}+z\right) u & 0 \\ 0 & (\varepsilon+z)(1-u)\end{array}\right]_{u} \in \mathcal{A}$ relative to the idempotent $u \in \mathcal{A}$. Then $z \in \sigma_{(1,0)-\varepsilon}(x)$, but $z \notin\left(\sigma_{(u, 0)-\varepsilon}\left(\left(\varepsilon^{2}+z\right) u\right) \cup \sigma_{(1-u, 0)-\varepsilon}((\varepsilon+z)(1-u))\right)$.

The new result is Theorem 2, while the other results presented here were published in the author's previous paper [2].

1. D. S. Djordjević and Y. Wei, Outer generalized inverses in rings, Comm. Algebra 33 (2005), 3051-3060.
2. M. Z. Kolundžija, (p, q)-outer generalized inverse of block matrices in Banach algebras, Banach J. Math. Anal. 8 (1) (2014), 98-108.
3. S. H. Kulkarni and D. Sukumar, The condition spectrum, Acta Sci. Math. (Szeged) 74 (2008), no. 3-4, 625-641.
4. L. N. Trefethen and M. Embree, Spectra and pseudospectra, Princeton University Press, Princeton, NJ, 2005.
