(p,q)-PSEUDOSPECTRUM AND (p,q)-CONDITION SPECTRUM

M. Z. Kolundžija¹

¹University of Niš, Faculty of Sciences and Mathematics, Department of Mathematics, Višegradska 33, 18000 Niš, Serbia

mkolundzija@pmf.ni.ac.rs, milica.kolundzija@gmail.com

We introduce the (p,q)-pseudospectrum and (p,q)-condition spectrum of an element in Banach algebra, and show their properties for an element represented as a block matrix.

Let \mathcal{A} be a complex Banach algebra with the unit 1. We use \mathcal{A}^{-1} , \mathcal{A}^{\bullet} , and $\sigma(a)$ to denote the set of all invertible and idempotent elements in \mathcal{A} , and the spectrum of a, respectively.

We can represent an element of Banach algebra in a block matrix form as follows.

Let $u \in \mathcal{A}^{\bullet}$. Then we can represent an element $a \in \mathcal{A}$ as $a = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}_{u}^{\bullet}$, where $a_{11} = uau$, $a_{12} = ua(1-u)$, $a_{21} = (1-u)au$, $a_{22} = (1-u)a(1-u)$. Note that $u\mathcal{A}u$ and $(1-u)\mathcal{A}(1-u)$ are Banach algebras with the units u and 1-u, respectively. In the following text, we will consider diagonal matrix representation

$$\left[\begin{array}{cc} a & 0\\ 0 & b \end{array}\right]_u. \tag{1}$$

An element $a \in \mathcal{A}$ is outer generalized invertible, if there exists some $b \in \mathcal{A}$ satisfying b = bab. Such b is called the outer generalized inverse of a. In this case ba and 1 - ab are idempotents corresponding to a and b. The set of all outer generalized invertible elements of \mathcal{A} will be denoted with $\mathcal{A}^{(2)}$.

The outer generalized inverses with prescribed idempotents were defined in [1] as follows: Let $a \in \mathcal{A}$ and $p, q \in \mathcal{A}^{\bullet}$. An element $b \in \mathcal{A}$ satisfying bab = b, ba = p, 1 - ab = q, will be called a (p,q)-outer generalized inverse of a, written $a_{p,q}^{(2)} = b$. If $a_{p,q}^{(2)}$ exists, then it is unique. The set of all outer generalized invertible elements of \mathcal{A} with prescribed idempotents $p, q \in \mathcal{A}^{\bullet}$ will be denoted with $\mathcal{A}_{p,q}^{(2)}$.

The pseudospectrum and the condition spectrum were defined and studied in [3] and [4]:

• Pseudospectrum [4] : Let $\varepsilon > 0$. The ε -pseudospectrum of an element $a \in \mathcal{A}$ is defined as $\Lambda_{\varepsilon}(a) = \{z \in \mathbb{C} \mid a - z \notin \mathcal{A}^{-1} \text{ or } ||(a - z)^{-1}|| \ge \varepsilon^{-1}\}.$

• Condition spectrum [3]: Let $0 < \varepsilon < 1$. The ε -condition spectrum of an element $a \in \mathcal{A}$ is defined as $\sigma_{\varepsilon}(a) = \{z \in \mathbb{C} \mid a - z \notin \mathcal{A}^{-1} \text{ or } ||(a - z)^{-1}|| \cdot ||a - z|| \ge \varepsilon^{-1}\}.$

We generalize the pseudospectrum and the condition spectrum by defining the (p,q)-pseudospectrum and the (p,q)-condition spectrum as follows:

Definition 1. ((p,q)-pseudospectrum) Let $\varepsilon > 0$. The (p,q)- ε -pseudospectrum of an element $a \in \mathcal{A}$ is defined as $\Lambda_{\varepsilon}(a) = \left\{ z \in \mathbb{C} \mid a - z \notin \mathcal{A}_{p,q}^{(2)} \text{ or } ||(a - z)_{p,q}^{(2)}|| \ge \varepsilon^{-1} \right\}.$

Definition 2. ((p,q)-condition spectrum) Let $0 < \varepsilon < 1$. The (p,q)- ε -condition spectrum of $a \in \mathcal{A}$ is defined as $\sigma_{(p,q)-\varepsilon}(a) = \left\{ z \in \mathbb{C} \mid a-z \notin \mathcal{A}_{p,q}^{(2)} \text{ or } ||(a-z)_{p,q}^{(2)}|| \cdot ||a-z|| \ge \varepsilon^{-1} \right\}.$

Now, we state the auxiliary results.

http://www.imath.kiev.ua/~young/youngconf2023

Lemma 1. Let x be as in (1), $p_1, q_1 \in (u\mathcal{A}u)^{\bullet}$ and $p_2, q_2 \in ((1-u)\mathcal{A}(1-u))^{\bullet}$ and let $p = p_1 + p_2 \in \mathcal{A}$ and $q = q_1 + q_2 \in \mathcal{A}$. Then $x \in \mathcal{A}_{p,q}^{(2)}$ if and only if $a \in (u\mathcal{A}u)_{p_1,q_1}^{(2)}$ and $b \in ((1-u)\mathcal{A}(1-u))_{p_2,q_2}^{(2)}$. If $x \in \mathcal{A}_{p,q}^{(2)}$, then $x_{p,q}^{(2)} = \begin{bmatrix} a_{p_1,q_1}^{(2)} & 0\\ 0 & b_{p_2,q_2}^{(2)} \end{bmatrix}_u^{\bullet}$.

As a corollary, we have the result for the invertibility of an element represented as in (1).

Lemma 2. Let x be as in (1). Then
$$x \in \mathcal{A}^{-1}$$
 if and only if $a \in (u\mathcal{A}u)^{-1}$ and $b \in ((1-u)\mathcal{A}(1-u))^{-1}$. If $x \in \mathcal{A}^{-1}$, then $x^{-1} = \begin{bmatrix} a^{-1} & 0 \\ 0 & b^{-1} \end{bmatrix}_u$.

Therefore, it holds $\sigma(x) = \sigma(a) \cup \sigma(b)$ for the spectrum of an element x represented as in (1).

We investigate whether the similar property holds for the (p,q)-pseudospectrum and the (p,q)-condition spectrum. It turned out that this property depends on the norm used in Banach algebra for the elements represented as in (1).

Theorem 1. Let x be as in (1) with the norm $||x||_{\infty} = \max\{||a||, ||b||\}, \varepsilon > 0, p_1, q_1 \in (u\mathcal{A}u)^{\bullet} and p_2, q_2 \in ((1-u)\mathcal{A}(1-u))^{\bullet} and let p = p_1 + p_2 \in \mathcal{A} and q = q_1 + q_2 \in \mathcal{A}.$ Then $\Lambda_{(p_1,q_1)-\varepsilon}(a) \cup \Lambda_{(p_2,q_2)-\varepsilon}(b) = \Lambda_{(p,q)-\varepsilon}(x).$

Theorem 2. Let x be as in (1) with the norm $||x||_1 = ||a|| + ||b||$, $\varepsilon > 0$, $p_1, q_1 \in (u\mathcal{A}u)^{\bullet}$ and $p_2, q_2 \in ((1-u)\mathcal{A}(1-u))^{\bullet}$ and let $p = p_1 + p_2 \in \mathcal{A}$ and $q = q_1 + q_2 \in \mathcal{A}$. Then $\Lambda_{(p_1,q_1)-\varepsilon}(a) \cup \Lambda_{(p_2,q_2)-\varepsilon}(b) \subset \Lambda_{(p,q)-\varepsilon}(x)$.

The following theorem holds whether we consider the norm $|| \cdot ||_{\infty}$ or the norm $|| \cdot ||_1$.

Theorem 3. Let x be as in (1), $0 < \varepsilon < 1$, $p_1, q_1 \in (u\mathcal{A}u)^{\bullet}$ and $p_2, q_2 \in ((1-u)\mathcal{A}(1-u))^{\bullet}$ and let $p = p_1 + p_2 \in \mathcal{A}$ and $q = q_1 + q_2 \in \mathcal{A}$. Then $\sigma_{(p_1,q_1)-\varepsilon}(a) \cup \sigma_{(p_2,q_2)-\varepsilon}(b) \subset \sigma_{(p,q)-\varepsilon}(x)$.

The next example shows that the converse inclusion is not true in the previous theorem.

Example 1. Let $0 < \varepsilon < 1$, $z \in \mathbb{C}$ and $u \in \mathcal{A}^{\bullet}$ such that $||u|| < \frac{1}{\sqrt{\varepsilon}}$ and $||1-u|| < \frac{1}{\sqrt{\varepsilon}}$. Let $x = \begin{bmatrix} (\varepsilon^2 + z)u & 0\\ 0 & (\varepsilon + z)(1-u) \end{bmatrix}_u \in \mathcal{A}$ relative to the idempotent $u \in \mathcal{A}$. Then $z \in \sigma_{(1,0)-\varepsilon}(x)$, but $z \notin (\sigma_{(u,0)-\varepsilon}((\varepsilon^2 + z)u) \cup \sigma_{(1-u,0)-\varepsilon}((\varepsilon + z)(1-u)))$.

The new result is Theorem 2, while the other results presented here were published in the author's previous paper [2].

- D. S. Djordjević and Y. Wei, Outer generalized inverses in rings, Comm. Algebra 33 (2005), 3051–3060.
- M. Z. Kolundžija, (p,q)-outer generalized inverse of block matrices in Banach algebras, Banach J. Math. Anal. 8 (1) (2014), 98-108.
- S. H. Kulkarni and D. Sukumar, *The condition spectrum*, Acta Sci. Math. (Szeged) 74 (2008), no. 3-4, 625-641.
- 4. L. N. Trefethen and M. Embree, *Spectra and pseudospectra*, Princeton University Press, Princeton, NJ, 2005.