SEQUENCES IN BANACH SPACES

Ferradi Athmane

University of M'sila, M'sila, Algeria
ferradiathmane@gmail.com
Recall that a continuous linear operator T between Banach spaces is absolutely p-summing (p-summing for short) if it sends weakly p-summable sequences to absolutely p-summable sequences. Karn and Sinha [2] introduce the mid- p-summable (operator p-summable) sequences in a Banach space E such that $\ell_{p}(E) \subset \ell_{p}^{\text {mid }}(E) \subset \ell_{p}^{w}(E)$, they introduce the weakly mid- p summing (sequentially p-limited) operators. A bounded linear operator $T: E \rightarrow F$ between Banach spaces is weakly mid- p-summing if it sends weakly p-summable sequences to mid- p summable sequences. Equivalently $S \circ T: E \rightarrow \ell_{p}$ is p-summing for all bounded linear operator S from F to ℓ_{p}. The principal idea is to replace, in the definition of p-summing operators, p-summable and weakly p-summable sequences by Lorentz mid- (p, q)-summable and weakly Lorentz (p, q)-summable [1] sequences respectively. Equivalently, ℓ_{p} and p-summing operators space by $\ell_{p, q}$ and Lorentz (p, q)-summing operators. In this work, we introduce and study the Lorentz mid- (p, q)-summable sequence in a Banach space E, denoted $\ell_{p, q}[E]$ as a generalization of the mid- p-summable sequence space. We prove that $\ell_{p, q}(E) \subset \ell_{p, q}[E] \subset \ell_{p, q}^{w}(E)$, and we give some properties concerning this Banach sequences space, we prove that $\ell_{p, q}[E]=\ell_{p, q}^{w}(E)$ if and only if $\Pi_{p, q}^{l z}\left(E, \ell_{p, q}\right)=\mathcal{L}\left(E, \ell_{p, q}\right)$.

Definition 1. Let $1 \leq q \leq p<\infty$. We say that $\left(x_{j}\right)_{j=1}^{\infty}$ in Banach space E is a Lorentz $\operatorname{mid}-(p, q)$-summable sequence if $\left(\left(\left\langle x_{n}^{*}, x_{j}\right\rangle\right)_{j=1}^{\infty}\right)_{n=1}^{\infty} \in \ell_{p, q}\left(\ell_{p, q}\right)$ for any $\left(x_{n}^{*}\right)_{n=1}^{\infty} \in \ell_{p, q}^{w^{*}}\left(E^{*}\right)$. The space of all such sequences shall be denoted by $\ell_{p, q}[E]$.

Definition 1 is also equivalent to: A sequence $\left(x_{j}\right)_{j=1}^{\infty}$ in Banach space E is Lorentz mid(p, q)-summable if $\left(\left(\left\langle x_{n}^{*}, x_{j}\right\rangle\right)_{n=1}^{\infty}\right)_{j=1}^{\infty} \in \ell_{p, q}\left(\ell_{p, q}\right)$ for any $\left(x_{n}^{*}\right)_{n=1}^{\infty} \in \ell_{p, q}^{w^{*}}\left(E^{*}\right)$.

Proposition 1. The next expression

$$
\left.\left\|\left(x_{j}\right)_{j=1}^{\infty}\right\|_{[p, q]}:=\sup _{\left(x_{n}^{*}\right)_{n=1}^{\infty} \in B_{p, q}^{w, q}\left(\mathbb{E}^{*}\right)} \|\left(\left\langle x_{n}^{*}, x_{j}\right\rangle\right)_{j=1}^{\infty}\right)_{n=1}^{\infty} \|_{\ell_{p, q}\left(\ell_{p, q)}\right)}
$$

is a norm that makes $\ell_{p, q}[E]$ a Banach space.
Since $\ell_{p, q}^{w^{*}}\left(E^{*}\right)$ can be identified with $\mathcal{L}\left(E, \ell_{p, q}\right)$ and $\ell_{p, q}^{w^{*}}\left(E^{*}\right)=\ell_{p, q}^{w}\left(E^{*}\right)$, the above definition 1 can be reorganized as follows.

Proposition 2. $\left(x_{j}\right)_{j=1}^{\infty} \in \ell_{p, q}[E]$ if and only if $\left(S\left(x_{j}\right)\right)_{j=1}^{\infty} \in \ell_{p, q}\left(\ell_{p, q}\right)$ for all $S \in \mathcal{L}\left(E, \ell_{p, q}\right)$. Moreover,

$$
\left\|\left(x_{j}\right)_{j=1}^{\infty}\right\|_{[p, q]}=\sup \left\{\left\|\left(S\left(x_{j}\right)\right)_{j=1}^{\infty}\right\|_{\ell_{p, q}\left(\ell_{p, q}\right)}: S \in \mathcal{L}\left(E, \ell_{p, q}\right),\|S\| \leq 1\right\}
$$

Proposition 3. Given $1 \leq q \leq p<\infty$. We have

$$
\ell_{p, q}(E) \subset \ell_{p, q}[E] \subset \ell_{p, q}^{w}(E)
$$

moreover

$$
\left\|\left(x_{j}\right)_{j}\right\|_{p, q}^{w} \leq\left\|\left(x_{j}\right)_{j}\right\|_{[p, q]} \leq\left\|\left(x_{j}\right)_{j}\right\|_{p, q} .
$$

http://www.imath.kiev.ua/~young/youngconf2023

We say that a Banach space E is a Lorentz weak mid- (p, q)-space if $\ell_{p, q}[E]=\ell_{p, q}^{w}(E)$.
Theorem 1. Let E be a Banach space. Then, E is Lorentz weak mid- (p, q)-space if and only if $\mathcal{L}\left(E, \ell_{p, q}\right)=\Pi_{p, q}^{l z}\left(E, \ell_{p, q}\right)$.

1. M. C. Matos and D. Pellegrino. Lorentz summing mappings. Math Nachr, 2010, 283, 10, 14091427.
2. A. Karn and D. Sinha. An operator summability of sequences in Banach spaces. Glasg. Math. J, 2014, 56, 2, 427-437.
