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We define and study properties related to the (k, a)-generalized translation operator which
is induced by the product formula of two kernels By, ,(\, ) Byq(A, y) (see, e.g., [1]) associated
with the (k; a)-generalized Fourier transform. We study Boas type theorems associated with the
(k; a)-generalized Fourier transform, more precisely; we define the modulus of smoothness asso-
ciated with the (k;a)-generalized Fourier transform. Moreover, we obtain B-N-S inequality for
this transform. As application, we prove a connection between K-functionals and a modulus of
smoothness in L?(u ). We also study Jackson’s theorem associated with the (k; a)-generalized
Fourier transform.

Lemma 1. Let k > 222% and |Az| > 1. Then we have the following assertions

(1) 1 = Bra(A 2)| = A,

where A is a positive constant.
(1) The kernel By q(X,.) has the asymptotic behavior in 0

B 4| Az |
S8ka + 4a? — 4

4|)\x|a+1
S8ka + 4a? + 4a

B';”(x) = - + My AT + sgn(Az)my 4 + o(|)\x|a+1).

Lemma 2. (See, e.g., [2]) The (k;a)-generalized Fourier transform By .(\,.) possesses the
following properties.

(1) LioaBrao(Nx) = —|A*Bra(\ ).
(i1) | Bra(h )] < 1,
where Ly, is the (k;a)-generalized Fourier oscillator (see, e.g., [2]).

A natural application of the product formula of two (k, a)-generalized Fourier kernel is to
define the translation operator.

Definition 1. (see, e.g., [1]) Let > 0 and f a continuous bounded function. Then, the
(k, a)-generalized Fourier translation operator 7, is defined by

m,f(x) = / F(2)day(2), z,y€R, )
R
where
Ak,a<x7 Y, Z)’Z’2k+a_2dz, if xy #0;
dVoy(2) = 0x(2), if y=0;

The translation operator (1) satisfies the following:
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Proposition 1. Let a < %, forallz,y € Ry and f is a continuous bounded function. Then

(1) = fy) = 7 f(x), (i) 0f(x) = f(z), (i) 727y = TyTa, (W) [Taf|kap < s
(v) If we suppose also that f € C.(R), then LyoTx = TuLlia, and (vi) Fra(r,f)(A) =

Bk,a()‘7 (_1>%y)Fk,a<f)(A)
Definition 2. We define the mth-order finite differences operator with step A by

a7 = 30 (s

1=0
Lemma 3. Let f € L*(ura). Then ||AT fllkaz < 5™ fllka2-
Proposition 2. For all f € LP(pu,.), we have

Fra AT fYN) = BEY"™(AW) Frof (N), where B¥*™(g Zm: ( )B,m(z ).
=0

k7a,m

Lemma 4. For all function f € W ,t > 0. The following inequality holds:

Wy (£10) < eat™ | L Fllka2-
Lemma 5. For all function f € L*(uy) the following inequality holds:
1f = Ps(Sllkaz < 2llAT)sf ka2 >0,
where Py is defined for all f € L*(urq) by Ps(f)(z) = Fy (Fw (f)(z)1g(z)), B> 0.
Theorem 1. For all function f € L*(uy,) the following inequality holds:
IL™ (Ps () ka2 < caB™||AT) B>0, meN.

Theorem 2. For all positive constants ¢; = ¢1(m,k,a) and co = ca(m,k,a). Then the
following inequality holds
clem(f §) < Kff;(f, ) <ec me(f §), where f € L*(up.q), 6> 0.

Theorem 3. Suppose that f € Wf’a’m (m=1,2,...). Then for all 5 >0, we have
EG(f) < eB7"wy (L f,1/8),

where EB’ “% s the value of the best approzimation of a function f € L*(uyq) and wQ “o,f) =
75 f — fllk.az2 the modulus of continuity of f.

Note that, the investigated results given in this abstract are analogs of those studied by
(see, e.g., [3,5]) and jointly with Dr. Ahmed Saoudi (see, e.g., [4]).
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