NORM INEQUALITIES FOR POSITIVE SEMEDIFINITE MATRICES
Sakina BENZAMIA ${ }^{1}$, Ahmad AL-NATOOR ${ }^{2}$, Fuad KITTANEH ${ }^{3}$
${ }^{1}$ Depatement of Mathematics, Hassiba Ben Bouali University, Chlef, Algeria
${ }^{2}$ Depatement of Mathematics, Isra University, Amman, Jordan
${ }^{3}$ Depatement of Mathematics, The University of Jordan, Amman, Jordan s.benzamia@univ-chlef.dz, ahmad.alnatoor@iu.edu.jo, fkitt@ju.edu.jo

Let $M_{n}(\mathbb{C})$ denote the space of all $n \times n$ complex matrices. The singular values of a matrix $A \in M_{n}(\mathbb{C})$, denoted by $s_{1}(A) \geq \ldots \geq s_{n}(A)$, are the eigenvalues of the positive semidefinite matrix $|A|=\left(A^{*} A\right)^{1 / 2}$ repeated according to multiplicity. A matrix norm $\|\|\cdot\|\|$ on $M_{n}(\mathbb{C})$ is called unitarily invariant if $\|\|U A V \mid\|=\| A\left\|\|\right.$ for all $A \in M_{n}(\mathbb{C})$ and for all unitary matrices $U, V \in M_{n}(\mathbb{C})$. The Schatten p-norm of $A \in M_{n}(\mathbb{C})$ is defined by

$$
\|A\|_{p}=\left(\sum_{i=1}^{n} s_{i}^{p}(A)\right)^{1 / p}
$$

for $1 \leq p \leq \infty$. If $p=\infty$, we get the spectral norm, which is denoted by $\|A\|=s_{1}(A)$.
For $A, B \in M_{n}(\mathbb{C})$, the direct sum $A \oplus B$ is $\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$.
As basic properties of the direct sum, we have $\|A \oplus B\|=\max (\|A\|,\|B\|)$ and $\|A \oplus B\|_{p}=$ $\left(\|A\|_{p}^{p}+\|B\|_{p}^{p}\right)^{1 / p}$. Also $\left\|\left\|\left[\begin{array}{cc}0 & A \\ A^{*} & 0\end{array}\right]\right\|\right\|=\| \| A \oplus A^{*}\| \|=\| \| A \oplus A\| \|$.

In this talk, we prove several unitarily invariant norm inequalities for positive semidefinite matrices. Some of these results give generalizations of earlier known inequalities.

Theorem 1. Let $A, B, X, Y \in M_{n}(\mathbb{C})$ be such that A and B are positive semidefinite. Then

$$
\|\|X A Y-Y B X\|\|
$$

$$
\begin{aligned}
\leq & \|X\|\|Y\|\|\|A \oplus B\|\| \\
& +\frac{1}{2}\| \|\left(A^{1 / 2}\left(X^{*} Y-Y X^{*}\right) B^{1 / 2}\right) \oplus\left(B^{1 / 2}\left(Y^{*} X-X Y^{*}\right) A^{1 / 2}\right) \|
\end{aligned}
$$

for every unitarily invariant norm. In particular, if $X^{*} Y=Y X^{*}$, then

$$
\|\|X A Y-Y B X\|\| \leq\|X\|\|Y\|\|A \oplus B\| \|
$$

Theorem 2. Let $A, B, X, Y \in M_{n}(\mathbb{C})$ be such that A and B are positive semidefinite. Then

$$
\begin{aligned}
& \left\|\left\|A^{1 / 4}\left(X^{*} Y-Y X^{*}\right) B^{1 / 4}\right\|\right. \\
& \leq \\
& \leq \\
& \quad\|X\|\|Y\|\left\|A^{1 / 2} \oplus B^{1 / 2}\right\| \| \\
& \\
& \quad+\frac{1}{2}\| \|\left(A^{1 / 4}\left(X^{*} Y-Y X^{*}\right) B^{1 / 4}\right) \oplus\left(B^{1 / 4}\left(Y^{*} X-X Y^{*}\right) A^{1 / 4}\right)\| \|
\end{aligned}
$$

for every unitarily invariant norm.
http://www.imath.kiev.ua/~young/youngconf2023

Theorem 3. Let $A, B, X, Y \in M_{n}(\mathbb{C})$ be such that A and B are positive semidefinite. Then

$$
s_{j}\left(A^{1 / 2} X B^{1 / 2}+B^{1 / 2} Y A^{1 / 2}\right) \leq\|A+B\| s_{j}(X \oplus Y)
$$

for $j=1, \ldots, n$.
Theorem 4. Let $A, B, X, Y \in M_{n}(\mathbb{C})$ be such that A and B are positive semidefinite matrices, and let $f(t)$ be a nonnegative concave function on $[0, \infty)$ satisfying $f(0)=0$. Then
$\left|\left|\left|f\left(\left|A^{1 / 2} X B^{1 / 2}+B^{1 / 2} Y A^{1 / 2}\right|\right)\right| \|\right.\right.$

$$
\leq\| \| f\left(\frac{B+X^{*} A X}{2}\right)\| \|+\| \|\left(\frac{B+Y A Y^{*}}{2}\right)\| \|
$$

for every unitarily invariant norm.

1. Bhatia R. Matrix Analysis. - New York: Springer-Verlag, 1997.
2. Kittaneh F. Commutator inequalities associated with the polar decomposition. Proc. Amer. Math. Soc., 2001, 130, 1279-1283.
