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Let Mn(C) denote the space of all n × n complex matrices. The singular values of a matrix
A ∈ Mn(C), denoted by s1(A) ≥ ... ≥ sn(A), are the eigenvalues of the positive semidefinite
matrix |A| = (A∗A)1/2 repeated according to multiplicity. A matrix norm |||·||| on Mn(C) is
called unitarily invariant if |||UAV ||| = |||A||| for all A ∈ Mn(C) and for all unitary matrices
U, V ∈Mn(C). The Schatten p-norm of A ∈Mn(C) is defined by

||A||p =

(
n∑

i=1

spi (A)

)1/p

for 1 ≤ p ≤ ∞. If p =∞, we get the spectral norm, which is denoted by ||A|| = s1(A).

For A,B ∈Mn(C), the direct sum A⊕B is
[
A 0
0 B

]
.

As basic properties of the direct sum, we have ‖A⊕B‖ = max (‖A‖ , ‖B‖) and ‖A⊕B‖p =(
‖A‖pp + ‖B‖

p
p

)1/p
. Also

∣∣∣∣∣∣∣∣∣∣∣∣[ 0 A
A∗ 0

]∣∣∣∣∣∣∣∣∣∣∣∣ = |||A⊕ A∗||| = |||A⊕ A|||.

In this talk, we prove several unitarily invariant norm inequalities for positive semidefinite
matrices. Some of these results give generalizations of earlier known inequalities.

Theorem 1. Let A,B,X, Y ∈Mn(C) be such that A and B are positive semidefinite. Then

|||XAY − Y BX|||

≤ ‖X‖‖Y ‖ |||A⊕B|||

+
1

2

∣∣∣∣∣∣(A1/2(X∗Y − Y X∗)B1/2
)
⊕
(
B1/2(Y ∗X −XY ∗)A1/2

)∣∣∣∣∣∣
for every unitarily invariant norm. In particular, if X∗Y = Y X∗, then

|||XAY − Y BX||| ≤ ‖X‖‖Y ‖ |||A⊕B||| .

Theorem 2. Let A,B,X, Y ∈Mn(C) be such that A and B are positive semidefinite. Then∣∣∣∣∣∣A1/4(X∗Y − Y X∗)B1/4
∣∣∣∣∣∣

≤ ‖X‖‖Y ‖
∣∣∣∣∣∣A1/2 ⊕B1/2

∣∣∣∣∣∣
+
1

2

∣∣∣∣∣∣(A1/4(X∗Y − Y X∗)B1/4
)
⊕
(
B1/4(Y ∗X −XY ∗)A1/4

)∣∣∣∣∣∣
for every unitarily invariant norm.
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Theorem 3. Let A,B,X, Y ∈Mn(C) be such that A and B are positive semidefinite. Then

sj(A
1/2XB1/2 +B1/2Y A1/2) ≤ ‖A+B‖sj(X ⊕ Y )

for j = 1, ..., n.

Theorem 4. Let A,B,X, Y ∈ Mn(C) be such that A and B are positive semidefinite ma-
trices, and let f(t) be a nonnegative concave function on [0,∞) satisfying f(0) = 0. Then∣∣∣∣∣∣f (∣∣A1/2XB1/2 +B1/2Y A1/2

∣∣)∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣∣∣∣∣f (B +X∗AX

2

)∣∣∣∣∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∣∣∣∣f (B + Y AY ∗

2

)∣∣∣∣∣∣∣∣∣∣∣∣
for every unitarily invariant norm.
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