NORM INEQUALITIES FOR POSITIVE SEMEDIFINITE MATRICES

Sakina BENZAMIA¹, Ahmad AL-NATOOR², Fuad KITTANEH³

¹Depatement of Mathematics, Hassiba Ben Bouali University, Chlef, Algeria
²Depatement of Mathematics, Isra University, Amman, Jordan
³Depatement of Mathematics, The University of Jordan, Amman, Jordan *s.benzamia@univ-chlef.dz, ahmad.alnatoor@iu.edu.jo, fkitt@ju.edu.jo*

Let $M_n(\mathbb{C})$ denote the space of all $n \times n$ complex matrices. The singular values of a matrix $A \in M_n(\mathbb{C})$, denoted by $s_1(A) \geq ... \geq s_n(A)$, are the eigenvalues of the positive semidefinite matrix $|A| = (A^*A)^{1/2}$ repeated according to multiplicity. A matrix norm $|||\cdot|||$ on $M_n(\mathbb{C})$ is called unitarily invariant if |||UAV||| = |||A||| for all $A \in M_n(\mathbb{C})$ and for all unitary matrices $U, V \in M_n(\mathbb{C})$. The Schatten *p*-norm of $A \in M_n(\mathbb{C})$ is defined by

$$||A||_p = \left(\sum_{i=1}^n s_i^p(A)\right)^{1/p}$$

for $1 \le p \le \infty$. If $p = \infty$, we get the spectral norm, which is denoted by $||A|| = s_1(A)$. For $A, B \in M_n(\mathbb{C})$, the direct sum $A \oplus B$ is $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$.

As basic properties of the direct sum, we have $||A \oplus B|| = \max(||A||, ||B||)$ and $||A \oplus B||_p = (||A||_p^p + ||B||_p^p)^{1/p}$. Also $||| \begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix} ||| = |||A \oplus A^*||| = |||A \oplus A|||$.

In this talk, we prove several unitarily invariant norm inequalities for positive semidefinite matrices. Some of these results give generalizations of earlier known inequalities.

Theorem 1. Let $A, B, X, Y \in M_n(\mathbb{C})$ be such that A and B are positive semidefinite. Then |||XAY - YBX|||

$$\leq ||X|| ||Y|| |||A \oplus B||| + \frac{1}{2} ||| (A^{1/2} (X^*Y - YX^*)B^{1/2}) \oplus (B^{1/2} (Y^*X - XY^*)A^{1/2}) |||$$

for every unitarily invariant norm. In particular, if $X^*Y = YX^*$, then

$$|||XAY - YBX||| \le ||X|| ||Y|| |||A \oplus B|||$$
.

Theorem 2. Let $A, B, X, Y \in M_n(\mathbb{C})$ be such that A and B are positive semidefinite. Then $|||A^{1/4}(X^*Y - YX^*)B^{1/4}|||$

$$\leq ||X|| ||Y|| \left| \left| \left| A^{1/2} \oplus B^{1/2} \right| \right| \right| \\ + \frac{1}{2} \left| \left| \left| \left(A^{1/4} (X^*Y - YX^*) B^{1/4} \right) \oplus \left(B^{1/4} (Y^*X - XY^*) A^{1/4} \right) \right| \right| \right| \right|$$

for every unitarily invariant norm.

http://www.imath.kiev.ua/~young/youngconf2023

Theorem 3. Let $A, B, X, Y \in M_n(\mathbb{C})$ be such that A and B are positive semidefinite. Then

$$s_j(A^{1/2}XB^{1/2} + B^{1/2}YA^{1/2}) \le ||A + B||s_j(X \oplus Y)$$

for j = 1, ..., n.

Theorem 4. Let $A, B, X, Y \in M_n(\mathbb{C})$ be such that A and B are positive semidefinite matrices, and let f(t) be a nonnegative concave function on $[0, \infty)$ satisfying f(0) = 0. Then

$$\begin{aligned} \left| \left| \left| f\left(\left| A^{1/2} X B^{1/2} + B^{1/2} Y A^{1/2} \right| \right) \right| \right| \right| \\ \leq \left| \left| \left| f\left(\frac{B + X^* A X}{2} \right) \right| \right| + \left| \left| \left| f\left(\frac{B + Y A Y^*}{2} \right) \right| \right| \right| \end{aligned}$$

for every unitarily invariant norm.

- 1. Bhatia R. Matrix Analysis. New York: Springer-Verlag, 1997.
- Kittaneh F. Commutator inequalities associated with the polar decomposition. Proc. Amer. Math. Soc., 2001, 130, 1279–1283.