JAFARI TRANSFORM OF MABC FRACTIONAL INTEGRAL OPERATOR

R. Belgacem ${ }^{1}$, A. Bokhari ${ }^{1}$

${ }^{1}$ Department of Mathematics, Faculty of Exact Sciences and Informatics, Hassiba Benbouali University of Chlef, Algeria
r.belgacem@univ-chlef.dz

The Jafari integral transform of the integrable function $v(t)$ denoted by $\mathcal{F}(\psi(s), \phi(s))$ is recently introduced by Hossein Jafari [4] by:

$$
\mathcal{J}[v(t)]=\mathcal{F}(\psi(s), \phi(s))=\phi(s) \int_{0}^{\infty} v(t) \exp ^{(-\psi(s) t)} d t
$$

where $t \geq 0$ and $\phi(s), \psi(s): \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$such that $\phi(s) \neq 0$.
Definition 1. [2,3] For $v^{(n)} \in L^{1}(0, \infty), n-1<\sigma<n, n \in \mathbb{N}, \alpha=\sigma-n+1,0<\alpha<1$, the higher order Atangana-Baleanu fractional derivative of Caputo sense is defined by

$$
\left({ }^{A B C} \mathbf{D}_{0}^{\sigma} v\right)(t)=\frac{M(\alpha)}{1-\alpha} \int_{0}^{t} E_{\alpha}\left(-r_{\alpha}(t-s)^{\alpha}\right) v^{(n)}(s) d s, \quad t \geq 0
$$

where $M(\alpha)$ is a normalization function satisfying $M(0)=M(1)=1$ and $r_{\alpha}=\frac{\alpha}{1-\alpha}$.
Definition 2. [1] For $v \in L^{1}(0, \infty), 0<\alpha<1$, the modified Atangana-Baleanu fractional integral operator is defined by

$$
\begin{equation*}
\left({ }^{A B M} I_{0}^{\alpha} v\right)(t)=\frac{1-\alpha}{M(\alpha)} v(t)+\frac{\alpha}{M(\alpha)}\left({ }^{R L} I_{0}^{\alpha} v\right)(t)-\frac{1-\alpha}{M(\alpha)} v(0)\left(1+\frac{r_{\alpha}}{\Gamma(1+\alpha)} t^{\alpha}\right) \tag{1}
\end{equation*}
$$

where ${ }^{R L} I_{0}^{\alpha}$ is the well known Riemann-Liouville fractional integral.
Moreover, it holds that

$$
\left({ }^{A B M} I_{0}^{\alpha} v\right)(0)=\frac{\alpha}{M(\alpha)}\left({ }^{R L} I_{0}^{\alpha} v\right)(0)
$$

The modified integral operator in (1) can be written as

$$
\left({ }^{A B M} I_{0}^{\alpha} v\right)(t)=\frac{1-\alpha}{M(\alpha)}(v(t)-v(0))+\frac{\alpha}{M(\alpha)}\left(\left({ }^{R L} I_{0}^{\alpha}(v-v(0))\right)\right)(t)
$$

When $\alpha=0$ we recover the initial function, and if $\alpha=1$, we obtain the ordinary integral.
Definition 3. [1] For $v \in L^{1}(0, \infty), n-1<\sigma<n, n \in \mathbb{N}, \alpha=\sigma-n+1$, the modified higher order Atangana-Baleanu fractional integral operator is defined by

$$
\begin{align*}
\left({ }^{A B M} \mathbf{I}_{0}^{\sigma} v\right)(t) & =\frac{1-\alpha}{M(\alpha)}\left[\left({ }^{R L} I_{0}^{n-1} v\right)(t)+r_{\alpha}\left({ }^{R L} I_{0}^{n+\alpha-1} v\right)(t)-v(0)\left(\frac{t^{n-1}}{\Gamma(n)}+r_{\alpha} \frac{t^{n+\alpha-1}}{\Gamma(n+\alpha)}\right)\right] \\
& =\frac{1-\alpha}{M(\alpha)}\left[\left({ }^{R L} I_{0}^{n-1} v-v(0)\right)(t)+r_{\alpha}\left({ }^{R L} I_{0}^{n+\alpha-1} v-v(0)\right)(t)\right] \tag{2}
\end{align*}
$$

http://www.imath.kiev.ua/~young/youngconf2023

Lemma 1. [1] For $v^{(n)} \in L^{1}(0, \infty), n-1<\sigma<n, n \in \mathbb{N}, \alpha=\sigma-n+1$, then

$$
\begin{gathered}
\left({ }^{A B M} \boldsymbol{I}_{0}^{\sigma}{ }^{A B C} \boldsymbol{D}_{0}^{\sigma} v\right)(t)=v(t)-\sum_{n-1}^{k=0} v^{(k)}(0) \frac{t^{k}}{k!} \\
\left({ }^{A B C} \boldsymbol{D}_{0}^{\sigma}{ }^{A B M} \boldsymbol{I}_{0}^{\sigma} v\right)(t)=v(t)-v(0)
\end{gathered}
$$

In the following, let $v(t) \in A$ with new general transform $\mathrm{F}(s)$.
Lemma 2. The new general transform of the modified Atangana-Baleanu fractional integral operator (1) is

$$
\mathcal{J}\left[\left({ }^{A B M} I_{0}^{\alpha} v\right)(t)\right]=\frac{1-\alpha}{M(\alpha)}\left(1+\frac{r_{\alpha}}{\psi(s)^{\alpha}}\right)\left[\mathcal{F}(\psi(s), \phi(s))-\frac{\phi(s)}{\psi(s)} v(0)\right] .
$$

Remark 1. If $\phi(s)=1$ and $\psi(s)=s$, then the Laplace transform is given by [1], direct calculation will lead to

$$
\mathcal{J}\left[\left({ }^{A B M} I_{0}^{\alpha} v\right)(t)\right]=\mathcal{L}\left[\left({ }^{A B M} I_{0}^{\alpha} v\right)(t)\right]=\frac{1-\alpha}{M(\alpha)}\left(1+\frac{r_{\alpha}}{s^{\alpha}}\right)\left[\mathcal{F}(\psi(s), \phi(s))-\frac{1}{s} v(0)\right]
$$

Remark 2. If $v(0)=0$, then $\left({ }^{A B M} I_{0}^{\alpha} v\right)(t)=\left({ }^{A B} I_{0}^{\alpha} v\right)(t)$, consequently we get

$$
\mathcal{J}\left[\left({ }^{A B M} I_{0}^{\alpha} v\right)(t)\right]=\mathcal{J}\left[\left({ }^{A B} I_{0}^{\alpha} v\right)(t)\right]=\frac{1-\alpha}{M(\alpha)}\left(1+\frac{r_{\alpha}}{\psi(s)^{\alpha}}\right) \mathcal{F}(\psi(s), \phi(s))
$$

Lemma 3. The new general transform of the modified higher order Atangana-Baleanu fractional integral operator is defined by (2) is

$$
\mathcal{J}\left[\left({ }^{A B M} \boldsymbol{I}_{0}^{\sigma} v\right)(t)\right]=\frac{1-\alpha}{M(\alpha)} \frac{\psi(s)^{\alpha}+r_{\alpha}}{\psi(s)^{n+\alpha-1}}\left[\mathcal{F}(\psi(s), \phi(s))-\frac{\phi(s)}{\psi(s)} v(0)\right] .
$$

Remark 3. If $\phi(s)=1$ and $\psi(s)=s$, we get

$$
\mathcal{J}\left[\left({ }^{A B M} \mathbf{I}_{0}^{\sigma} v\right)(t)\right]=\mathcal{L}\left[\left({ }^{A B M} \mathbf{I}_{0}^{\sigma} v\right)(t)\right]=\frac{1-\alpha}{M(\alpha)} \frac{s^{\alpha}+r_{\alpha}}{s^{n+\alpha-1}}\left[\mathcal{F}(\psi(s), \phi(s))-\frac{1}{s} v(0)\right],
$$

and this is the same result obtained in [1].

1. Al-Refai M. Proper inverse operators of fractional derivatives with nonsingular kernels. Rend. Circ. Mat. Palermo, II. Ser, 2022, 71, 525-535.
2. Atangana A., Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci., 2016, 20, 763-769.
3. Atangana A. On the new fractional derivative and application to nonlinear Fisher's reaction diffusion equation. Appl. Math. Comput., 2016, 273, 948-956.
4. Jafari H. A new general integral transform for solving integral equations. J. Adv. Res., 2021, 32, 133-138.
