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For p > 1, and a sequence {an}∞n=1 of complex numbers the classical discrete Hardy’s
inequality ([2], Theorem 326) in one dimension states that
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holds unless an is null. Here p > 1 is a real number, and the constant term
(
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with the inequality (1) is sharp.

In case of p = 2, the above inequality (1) becomes
∞∑
n=1

∣∣∣ 1
n

n∑
k=1

ak

∣∣∣2 < 4
∞∑
n=1

|an|2, (2)

holds unless an is null, and the constant term ‘4’ associated with inequality (2) is best possible.

The inequality (2) further equivalent to the following
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where An =
n∑

k=1

ak such that A = (An) ∈ Cc(N0), the space of finitely supported functions on

N0 with the assumption that A0 = 0.

In 2018, Keller, Pinchover and Pogorzelski [3] obtained a surprising result on the improve-
ment of inequality (3), and proved the following inequality
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where the weight sequence {wn} is optimal (in sense of criticality) and is defined as follows
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The point-wise improved discrete Hardy’s inequality (4) in one dimension can be further
extended to a generalized form. In fact we have the following result (see [1], Theorem 2.1).

Theorem 1. Let {An} be any sequence of complex numbers such that An ∈ Cc(N0) with
A0 = 0 and g = {gn}∞n=1 be any strictly positive sequence of real numbers. Then the following
inequality holds
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where λ = {λn}n≥1 such that λn > 0, n ∈ N, and the sequence wn(λ, g) is defined as below
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Further, if there exists a sequence of elements γN ∈ Cc(N0) such that γN ≤ γN+1 with γN → 1
as N →∞ pointwise, and

lim
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|γNn − γNn−1|2 = 0,

then wn(λ, g) is optimal.

The criteria for ‘optimality ’ (in fact criticality) of the generalized weight sequence wn(λ, g)
for particular {gn} in the extended improved discrete Hardy’s inequality has been obtained.
Several consequences of this result are given. The presentation will be based on the author’s
latest contribution [1] as given below.
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