On improved discrete Hardy's inequality

A. Manna ${ }^{1}$

${ }^{1}$ Indian Institute of Carpet Technology, Chauri Road, Bhadohi-221401, India
atanu.manna@iict.ac.in
For $p>1$, and a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of complex numbers the classical discrete Hardy's inequality ([2], Theorem 326) in one dimension states that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\frac{1}{n} \sum_{k=1}^{n} a_{k}\right|^{p}<\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty}\left|a_{n}\right|^{p} \tag{1}
\end{equation*}
$$

holds unless a_{n} is null. Here $p>1$ is a real number, and the constant term $\left(\frac{p}{p-1}\right)^{p}$ associated with the inequality (1) is sharp.

In case of $p=2$, the above inequality (1) becomes

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\frac{1}{n} \sum_{k=1}^{n} a_{k}\right|^{2}<4 \sum_{n=1}^{\infty}\left|a_{n}\right|^{2} \tag{2}
\end{equation*}
$$

holds unless a_{n} is null, and the constant term ' 4 ' associated with inequality (2) is best possible.
The inequality (2) further equivalent to the following

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|A_{n}-A_{n-1}\right|^{2} \geq \frac{1}{4} \sum_{n=1}^{\infty} \frac{\left|A_{n}\right|^{2}}{n^{2}} \tag{3}
\end{equation*}
$$

where $A_{n}=\sum_{k=1}^{n} a_{k}$ such that $A=\left(A_{n}\right) \in C_{c}\left(\mathbb{N}_{0}\right)$, the space of finitely supported functions on \mathbb{N}_{0} with the assumption that $A_{0}=0$.

In 2018, Keller, Pinchover and Pogorzelski [3] obtained a surprising result on the improvement of inequality (3), and proved the following inequality

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|A_{n}-A_{n-1}\right|^{2} \geq \sum_{n=1}^{\infty} w_{n}\left|A_{n}\right|^{2}>\frac{1}{4} \sum_{n=1}^{\infty} \frac{\left|A_{n}\right|^{2}}{n^{2}} \tag{4}
\end{equation*}
$$

where the weight sequence $\left\{w_{n}\right\}$ is optimal (in sense of criticality) and is defined as follows

$$
w_{n}=2-\sqrt{1-\frac{1}{n}}-\sqrt{1+\frac{1}{n}}>\frac{1}{4 n^{2}}, n \in \mathbb{N} .
$$

The point-wise improved discrete Hardy's inequality (4) in one dimension can be further extended to a generalized form. In fact we have the following result (see [1], Theorem 2.1).

Theorem 1. Let $\left\{A_{n}\right\}$ be any sequence of complex numbers such that $A_{n} \in C_{c}\left(\mathbb{N}_{0}\right)$ with $A_{0}=0$ and $g=\left\{g_{n}\right\}_{n=1}^{\infty}$ be any strictly positive sequence of real numbers. Then the following inequality holds

$$
\begin{equation*}
\sum_{n=1}^{\infty} w_{n}(\lambda, g)\left|A_{n}\right|^{2} \leq \sum_{n=1}^{\infty} \frac{\left|A_{n}-A_{n-1}\right|^{2}}{\lambda_{n}} \tag{5}
\end{equation*}
$$

http://www.imath.kiev.ua/~young/youngconf2023
where $\lambda=\left\{\lambda_{n}\right\}_{n \geq 1}$ such that $\lambda_{n}>0, n \in \mathbb{N}$, and the sequence $w_{n}(\lambda, g)$ is defined as below

$$
w_{n}(\lambda, g)=\frac{1}{\lambda_{n}}+\frac{1}{\lambda_{n+1}}-\frac{g_{n-1}}{\lambda_{n} g_{n}}-\frac{g_{n+1}}{\lambda_{n+1} g_{n}} .
$$

Further, if there exists a sequence of elements $\gamma^{N} \in C_{c}\left(\mathbb{N}_{0}\right)$ such that $\gamma^{N} \leq \gamma^{N+1}$ with $\gamma^{N} \rightarrow 1$ as $N \rightarrow \infty$ pointwise, and

$$
\lim _{N \rightarrow \infty} \sum_{n=2}^{\infty} \frac{g_{n} g_{n-1}}{\lambda_{n}}\left|\gamma_{n}^{N}-\gamma_{n-1}^{N}\right|^{2}=0
$$

then $w_{n}(\lambda, g)$ is optimal.
The criteria for 'optimality' (in fact criticality) of the generalized weight sequence $w_{n}(\lambda, g)$ for particular $\left\{g_{n}\right\}$ in the extended improved discrete Hardy's inequality has been obtained. Several consequences of this result are given. The presentation will be based on the author's latest contribution [1] as given below.

1. Das B., Manna A. On the improvements of Hardy and Copson inequalities. 'Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas', 2023, 117(2), 18 p.
2. Hardy G. H., Littlewood J. E. and Pólya G. Inequalities. - 2nd Edition, Cambridge University Press, 1967, 324 p.
3. Keller M., Pinchover Y. and Pogorzelski F. An improved discrete Hardy inequality. Amer. Math. Monthly, 2018, 125 (4), 347-350.
