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For p > 1, and a sequence {a,}>°; of complex numbers the classical discrete Hardy’s
inequality (|2], Theorem 326) in one dimension states that
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holds unless a,, is null. Here p > 1 is a real number, and the constant term (%)p associated
with the inequality (1) is sharp.

In case of p = 2, the above inequality (1) becomes
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holds unless a,, is null, and the constant term ‘4’ associated with inequality (2) is best possible.

The inequality (2) further equivalent to the following
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where A,, = Z ar such that A = (A,)) € C.(Ny), the space of finitely supported functions on

k=1
Ny with the assumption that Aq = 0.

In 2018, Keller, Pinchover and Pogorzelski [3] obtained a surprising result on the improve-
ment of inequality (3), and proved the following inequality
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where the weight sequence {w,} is optimal (in sense of criticality) and is defined as follows
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The point-wise improved discrete Hardy’s inequality (4) in one dimension can be further
extended to a generalized form. In fact we have the following result (see [1], Theorem 2.1).

Theorem 1. Let {A,} be any sequence of complex numbers such that A, € C.(Ng) with
Ao =0 and g = {gn}>, be any strictly positive sequence of real numbers. Then the following
inequality holds
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where A = {\, }n>1 such that \, >0, n € N, and the sequence w, (A, g) is defined as below
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Further, if there exists a sequence of elements v~ € C.(Ny) such that v < N1 with 4V — 1
as N — oo pointwise, and
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then wy, (A, g) is optimal.

The criteria for ‘optimality’ (in fact criticality) of the generalized weight sequence w, (), g)
for particular {g,} in the extended improved discrete Hardy’s inequality has been obtained.
Several consequences of this result are given. The presentation will be based on the author’s
latest contribution [1] as given below.
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