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Let ψ = (ψs,t : −∞ < s ≤ t < ∞) be a stochastic flow on a locally compact separable
metric space (M,ρ). ψ = (ψs,t : −∞ < s ≤ t <∞) is a family of measurable random mappings
of M that satisfy almost surely the evolutionary property, for any sequence t1 < t2 < . . . <
tn mappings ψt1,t2 , . . . , ψtn−1,tn are independent, for any s < t mappings ψs,t and ψ0,t−s are
identically distributed and for all f ∈ C0(M), s ≤ t and x ∈M,

lim
(u,v)→(s,t)

sup
y∈M

E(f(ψu,v(y))− f(ψs,t(y)))2 = 0,

lim
y→x

E(f(ψs,t(y))− f(ψs,t(x)))2 = 0, lim
y→∞

E(f(ψs,t(y)))2 = 0.

A fundamental result obtained in [1] states that the relation

P (n)(x,B) = P((ψ0,t(x1), . . . , ψ0,t(xn)) ∈ B), n ≥ 1, x ∈Mn, B ∈ B(Mn),

establishes a one-to-one correspondence between stochastic flows on M and consistence se-
quences (P (n) : n ≥ 1) of coalescing Feller transition functions. The sequence (P (n) : n ≥ 1)
defines distributions of finite-point motions of the flow. We will be interested in modifications
of stochastic flows that satisfy the strong evolutionary property. These are modifications ψ′ of
ψ such that for almost all ω ∈ Ω and all r ≤ s ≤ t,

ψ′s,t(ω, ·) ◦ ψ′r,s(ω, ·) = ψ′r,t(ω, ·).

Our main result is the following. Let ((sn, xn) : n ≥ 1) be a dense set in R × M, and
Φn(t) = ψsn,t(xn), t ≥ sn, n ≥ 1. Assume that with probability 1 for any compact L ⊂ R×M
the set

{Φn|[s∞) : sn ≤ s, (s,Φn(s)) ∈ L}
is relatively compact in the topology of uniform convergence on bounded intervals. Consider
sets Ks,t

x =
⋂

ε>0 {Φn|[s,t] : sn ≤ s, ρ(Φn(s), x) ≤ ε} and let

E = {(s, x) ∈ R×M : ∀t > s Ks,t
x contains at least two distinct functions}.

Assume that F is a closed subset of R×M, such that with probability 1 the set E is a subset
of F .

Theorem 1. If ψ′ = (ψ′s,t : −∞ < s ≤ t < ∞) is a modification of a stochastic flow ψ,
such that with probability 1

• if x = Φn(s), then ψ′s,·(x) = Φn|[s,∞);

• if r < s < t, ψ′r,s(x) ∈ F, ψ′r,t(x) ∈ F, then there exists n ≥ 1, such that sn ≤ t and
ψ′r,·(x)|[t,∞) = Φn|[t,∞).

Then ψ′ is a strong flow.

We also give examples of stochastic flows on metric graphs that satisfy conditions of the
Theorem 1. In particular, we construct analogues of Arratia flows on metric graphs.
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