ASYMPTOTIC BEHAVIOR OF THE PARAMETER ESTIMATORS IN THE VASICEK MODEL BASED ON DISCRETE OBSERVATIONS

O.D. Prykhodko, K.V. Ralchenko

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine prykhodkood@gmail.com, kostiantynralchenko@knu.ua

We study the following mathematical model for the evolution of the interest rate, which was first proposed by O. Vasicek in 1977 [3]:

$$dX_t = (\alpha - \beta X_t)dt + \gamma dW_t, \quad X_t\big|_{t=0} = x_0 \in \mathbb{R},$$
(1)

where the parameters $\alpha \in \mathbb{R}$, $\beta > 0$, and $\gamma > 0$ are fixed but unknown, and $W = \{W_t, t \ge 0\}$ is a Wiener process.

In the case of continuous-time observations of a trajectory of the process $X = \{X_t, t \in [0, T]\}$ the estimation procedure is well known. For such data the coefficient γ can be evaluated almost surely with the help of realized quadratic variations; α and β are then estimated using the maximum likelihood method or the least squares method, see, e.g., [1]. Our goal is to construct estimators for all parameters of the equation (1) for discrete-time observations.

We assume that we observe low-frequency data $X_0, X_h, X_{2h}, \ldots, X_{nh}$ with a fixed positive step h. Let us introduce the following statistics:

$$\xi_n := \frac{1}{n} \sum_{k=0}^{n-1} X_{kh}, \qquad \eta_n := \frac{1}{n} \sum_{k=0}^{n-1} X_{kh}^2, \qquad \zeta_n := \frac{1}{n} \sum_{k=0}^{n-1} X_{kh} X_{(k+1)h}.$$

The construction of the estimators is based on the next lemma [2].

Lemma 1. The following convergences hold:

$$\xi_n \to \frac{\alpha}{\beta}, \qquad \eta_n \to \frac{\alpha^2}{\beta^2} + \frac{\gamma^2}{2\beta}, \qquad \zeta_n \to \frac{\alpha^2}{\beta^2} + \frac{\gamma^2}{2\beta}e^{-\beta\hbar}$$

a.s., as $n \to \infty$.

The following estimators for the parameters α , β and γ are obtained:

$$\hat{\beta}_n = \frac{1}{h} \log^+ \frac{\eta_n - \xi_n^2}{\zeta_n - \xi_n^2}, \qquad \hat{\alpha}_n = \xi_n \hat{\beta}_n, \qquad \hat{\gamma}_n^2 = 2\hat{\beta}_n \left(\eta_n - \xi_n^2\right), \tag{2}$$

where

$$\log^{+} x = \begin{cases} \log x, & x > 1, \\ 0, & x \le 1. \end{cases}$$

The following two theorems are the main results on the asymptotic behaviour of the estimators (2).

Theorem 1. The following convergences hold a.s. as $n \to \infty$:

$$\hat{\alpha}_n \to \alpha, \qquad \hat{\beta}_n \to \beta, \qquad \hat{\gamma}_n \to \gamma,$$

i.e., $\hat{\alpha}_n$, $\hat{\beta}_n$, $\hat{\gamma}_n$ are strongly consistent estimators of the parameters α , β , γ respectively.

http://www.imath.kiev.ua/~young/youngconf2023

Theorem 2. The following convergence hold:

$$\sqrt{n} \begin{pmatrix} \hat{\alpha}_n - \alpha \\ \hat{\beta}_n - \beta \\ \hat{\gamma}_n^2 - \gamma^2 \end{pmatrix} \to \mathcal{N}(0, \Sigma)$$

in distribution as $n \to \infty$, i.e., $\hat{\alpha}_n$, $\hat{\beta}_n$, $\hat{\gamma}_n$ are asymptotically normal estimators of the parameters α , β , γ respectively.

Moreover, the explicit formulas for the elements of asymptotic covariance matrix Σ are derived.

Finally, the quality of the estimators is illustrated with the help of simulated trajectories of the process X (generated as a solution of the stochastic differential equation (1) by the Euler-Maruyama method). The sample means and standard deviations of the estimates are reported in Table 1. The simulation study confirms the theoretical results stated in Theorems 1 and 2.

	n = 100	n = 500	n = 1000	n = 1500	n = 2000
Mean of $\hat{\alpha}_n$	1.0193	1.0683	1.0393	1.0280	1.0204
Mean of $\hat{\beta}_n$	1.9983	2.1324	2.0763	2.0555	2.0404
Mean of $\hat{\gamma}_n$	0.8896	1.0257	1.0168	1.0123	1.0095
S. Dev. of $\hat{\alpha}_n$	0.6647	0.2278	0.1368	0.1073	0.0897
S. Dev. of $\hat{\beta}_n$	1.2577	0.4404	0.2634	0.2059	0.1715
S. Dev. of $\hat{\gamma}_n$	0.4391	0.1073	0.0627	0.0505	0.0421

Table 1: Estimation results of the sampling interval h = 1

- 1. Kutoyants Y. A. Statistical inference for ergodic diffusion processes. —London: Springer-Verlag. Springer Series in Statistics, 2004. 482 p.
- Prykhodko O., Ralchenko K. Strongly consistent estimation of all parameters in the Vasicek model by discrete observations. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics & Mathematics, 2022, No. 4, 26–30.
- Vasicek O. An equilibrium characterization of the term structure. Journal of Financial Economics, 1977, 5, No. 2, 177–188.