ASYMPTOTICS RELATED TO NUMBER OF UPCROSSINGS OF A GAUSSIAN RANDOM PROCESS

H. V. Navrotskyi ${ }^{1}$
${ }^{1}$ Institute of Mathemaics NAS of Ukraine, Kyiv, Ukraine navrotskiy1992@gmail.com

Given a Gaussian centered random field $\xi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with the covariance $\operatorname{cov}(\xi(u), \xi(v))=$ $e^{-\|u-v\|^{2}}$, we define the random process $\eta(t)=\xi(f(t))$, where $f:[0,1] \rightarrow \mathbb{R}^{2}, f \in C_{p}^{2}([0,1])$, is a parametrization of a closed smooth curve without self-intersections. As an example, consider the function $f(t)=(R \cos t, R \sin t)$. Then $\eta_{R}(t)=\xi(R \cos t, R \sin t)$. The covariance of the process η_{R} equals

$$
E \eta_{R}(t) \eta_{R}(s)=e^{-R^{2}(2-2 \cos (t-s))}
$$

It can be seen that $E \eta_{R}(t) \eta_{R}(s) \rightarrow 0, R \rightarrow \infty$. To obtain a non-trivial limit we consider the process

$$
\zeta_{R}(t)=\eta_{R}\left(\frac{t}{R}\right)
$$

Then

$$
E \zeta_{R}(t) \zeta_{R}(s)=e^{-R^{2}\left(1-\cos \frac{t-s}{R}\right)} \rightarrow e^{-(t-s)^{2}}, R \rightarrow \infty
$$

In the limit we obtain a covariance of a stationary Gaussian process ζ_{∞}.
Definition 1. The number of upcrossings of a given level $c>0$ by a random process η in time T is

$$
N_{c}(T)=\#\left\{t \in[0, T]: \eta^{\prime}(t)>0, \eta(t)=c\right\}
$$

We can use the Rice formula to calculate the number of upcrossings by a process of level c in time T by a stationary process [1]:

$$
E N_{c}(T)=T \int_{0}^{\infty} y p(c, y) d y
$$

where p is the joint density of the process and its derivative at a fixed time.
In the case of ζ_{∞} we have

$$
E N_{c}(T)=T e^{-c^{2} / 2}
$$

We address the following question: how the sequence of levels c_{m} must increase in order to get a finite limit of $N_{c}(T)$? We use a discrete partition of $[0, T]$ into n subsegments and study the distribution of the sum

$$
\sum_{k=0}^{n} I\left\{\zeta_{\infty}\left(\frac{k T}{n}\right)>c_{m}\right\}
$$

1. Adler R. J., Taylor J. E. Random Fields and Geometry. - Springer Monographs in Mathematics, 2007, 450.
