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In this work we are interested to study the asymptotic behavior of the Markov chain (Zn)n≥0
on [0, 1] × [0, 1] corresponding for example to the successive positions of a robot in a square
room. Specifically, if the robot is at x = (x1, x2) ∈ [0, 1]× [0, 1] at time n, it selects at time n+1
one of the four rectangles [0, x1]× [0, x2] , [0, x1]× [x2, 1] ,[x1, 1]× [0, x2] or [x1, 1]× [x2, 1] with
probabilities p00(x1, x2), p01(x1, x2), p10(x1, x2) and p11(x1, x2) and then moves to a random
point y = (y1, y2) in the chosen rectangle.

We assume that the functions pij, 0 ≤ i, j ≤ 2, are continuous and non negative on [0, 1]×
[0, 1], and satisfy p00(x1, x2) + p01(x1, x2) + p10(x1, x2) + p11(x1, x2) = 1.

The chain (Zn)n≥0 fits into the framework of iterated random functions with place dependent
probabilities. By using quasi-compact linear operators technique (see [1], [2] and [3] ) we prove
the following theorem which give the sufficient condition for the uniqueness of the stationary
probability measure.

Let Q be the transition operator of the chain (Zn)n≥0, and we denote Hα([0, 1]× [0, 1]), the
space of α-Hölder continuous functions from [0, 1]× [0, 1] to C.

Theorem 1. Assume that

1. for all i, j = 0, 1, the functions pij belong to Hα([0, 1]× [0, 1]).

2. there exist i, j ∈ {0, 1} such that δij = min
x∈[0,1]×[0,1]

pij(x) > 0.

Then, the Diaconis-Freedman chain on [0, 1] × [0, 1] has a unique Q-invariant probability
measure ν. Furthermore, there exist constants κ > 0 and ρ ∈ [0, 1[ such that

∀ϕ ∈ Hα([0, 1]× [0, 1]), ∀x ∈ [0, 1]× [0, 1] |Qnϕ(x)− ν(ϕ)| ≤ κρn.

The condition 2 of the Theorem 1 is a sufficient condition to ensure the unicity of an
invariant probability measure but it is clearly too strong. In this work, we propose a complete
description of the invariant measure for this chain when condition 2 is not satisfied and explore
the case when there are several invariant measures.
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