ON THE ASYMPTOTIC BEHAVIOR OF ONE CLASS OF TWO-DIMENSIONAL MARKOV CHAINS

Fetima Ladjimi¹

¹Department of mathematics, Mouloud Mammeri University of Tizi-Ouzou, Laboratoire de Mathématiques Pures et Appliquées, Tizi-Ouzou, Algeria

fetima.ladjimi@ummto.dz

In this work we are interested to study the asymptotic behavior of the Markov chain $(Z_n)_{n\geq 0}$ on $[0,1] \times [0,1]$ corresponding for example to the successive positions of a robot in a square room. Specifically, if the robot is at $x = (x_1, x_2) \in [0,1] \times [0,1]$ at time n, it selects at time n+1one of the four rectangles $[0, x_1] \times [0, x_2]$, $[0, x_1] \times [x_2, 1]$, $[x_1, 1] \times [0, x_2]$ or $[x_1, 1] \times [x_2, 1]$ with probabilities $p_{00}(x_1, x_2)$, $p_{01}(x_1, x_2)$, $p_{10}(x_1, x_2)$ and $p_{11}(x_1, x_2)$ and then moves to a random point $y = (y_1, y_2)$ in the chosen rectangle.

We assume that the functions $p_{ij}, 0 \le i, j \le 2$, are continuous and non negative on $[0, 1] \times [0, 1]$, and satisfy $p_{00}(x_1, x_2) + p_{01}(x_1, x_2) + p_{10}(x_1, x_2) + p_{11}(x_1, x_2) = 1$.

The chain $(Z_n)_{n\geq 0}$ fits into the framework of iterated random functions with place dependent probabilities. By using quasi-compact linear operators technique (see [1], [2] and [3]) we prove the following theorem which give the sufficient condition for the uniqueness of the stationary probability measure.

Let Q be the transition operator of the chain $(Z_n)_{n\geq 0}$, and we denote $\mathcal{H}_{\alpha}([0,1]\times[0,1])$, the space of α -Hölder continuous functions from $[0,1]\times[0,1]$ to \mathbb{C} .

Theorem 1. Assume that

- 1. for all i, j = 0, 1, the functions p_{ij} belong to $\mathcal{H}_{\alpha}([0, 1] \times [0, 1])$.
- 2. there exist $i, j \in \{0, 1\}$ such that $\delta_{ij} = \min_{x \in [0,1] \times [0,1]} p_{ij}(x) > 0$.

Then, the Diaconis-Freedman chain on $[0,1] \times [0,1]$ has a unique Q-invariant probability measure ν . Furthermore, there exist constants $\kappa > 0$ and $\rho \in [0,1]$ such that

$$\forall \varphi \in \mathcal{H}_{\alpha}([0,1] \times [0,1]), \ \forall x \in [0,1] \times [0,1] \quad |Q^{n}\varphi(x) - \nu(\varphi)| \le \kappa \rho^{n}.$$

The condition 2 of the Theorem 1 is a sufficient condition to ensure the unicity of an invariant probability measure but it is clearly too strong. In this work, we propose a complete description of the invariant measure for this chain when condition 2 is not satisfied and explore the case when there are several invariant measures.

- 1. Hervé L. Étude d'opérateurs quasi-compacts positifs. Applications aux opérateurs de transfert. Ann. Inst. Henri Poincaré section B, 1994, 30, 3, 437-466.
- Ladjimi F., Peigné M. On the asymptotic behavior of the Diaconis-Freedman chain on [0, 1]. Stat. & Probab. Letters, 2019, 145, 1-11.
- 3. Tran T. D., Peigné M. On the asymptotic behavior of the Diaconis and Freedman's chain in a multidimensional simplex. https://arxiv.org/abs/2006.02069