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Let H be a real separable Hilbert space with inner product 〈· , ·〉 and norm ‖ · ‖. The
quadratic entropy of a set A ⊂ H is defined as follows. For any infinite or finite sequence {un}
in A consider the orthogonal complement πuj of the vector uj onto the linear span of all vectors
{un} except uj itself.

Definition 1. Quadratic entropy of a set A ⊂ H is defined as

H(A) = sup
∑
n

‖πuj‖2,

where the supremum is taken over all possible finite or infinite sequences {un} in A.

This definition was given in [1] in order to study certain properties of Brownian stochastic
flows. For the space of Gaussian random variables we can redefine ‖πuj‖2 in terms of the
conditional variance, as

‖πuj‖2 = V ar(uj|ui, i 6= j).

Example 1. For a ball B(0, 1) in Rn we can precisely calculate the quadratic entropy:

H(B(0, 1)) = n.

We study the quadratic entropy of the set {ξ(t) : t ∈ [0, 1]}, where ξ is a Gaussian process
on [0, 1] with zero mean and the covariance function Eξ(s)ξ(t) = exp(−| s− t |α), α ∈ [1, 2].

We provide a lower bound using results of [2]:

‖πξ(tj)‖2 ≥
C1

nα+1
.
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