ASYMPTOTICS RELATED TO GENERALIZED SELF INTERSECTION LOCAL TIMES OF BROWNIAN MOTION

A. A. Dorogovtsev¹, N. Salhi²

¹Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine ²University of Kairouan, Kairouan, Tunisia andrey.dorogovtsev@qmail.com, salhi.naoufel@qmail.com

Let B(t) be a Brownian motion in \mathbb{R}^d . The double self intersection local time at a point $u \in \mathbb{R}^d \setminus \{0\}$ is the local time at u of the random field X(s,t) = B(t) - B(s). We denote it by $\rho(u)$. Formally, it can be written as

$$\rho(u) = \int_{\Delta_2} \delta_u \big(B(t) - B(s) \big) ds dt,$$

where $\Delta_2 = \{(s,t) \in [0,1]^2; s < t\}$. If $d \ge 4$ then $\rho(u)$ is a positive generalized Wiener function which can be represented as a measure θ_u on the Wiener space

 $W_0^d = \left\{ \omega : [0,1] \to \mathbb{R}^d \, \big| \, \omega \text{ is continuous and } \omega(0) = 0 \right\}.$

We provide some asymptotics for the generalized self intersection local time $\rho(u)$, when u tends to 0, in terms of the measures θ_u . The main results are related to the measure of the whole space $\theta_u(W_0^d)$ and the capacity of the support of θ_u .