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The classical infinite occupancy scheme is a model in which one throws balls to an infinite
array of boxes 1, 2, ... and the probability a ball hits the box k is pk. Features of the occupancy
pattern emerging after the first n balls are thrown have been intensively studied.

There is also a randomized version of the classical infinite occupancy scheme, in which the
hitting probabilities of boxes are positive random variables (Pk)k∈N with an arbitrary joint
distribution satisfying

∑
k∈N Pk = 1 almost surely (a.s.). We consider here a variant of this

occupancy scheme, which corresponds to a nested family of boxes. The construction is conve-
niently described in terms of the genealogical structure of populations. Let I0 := {∅} be the
initial ancestor and I1 := {1, 2, . . .} be the set of the first generation boxes with some random
hitting probabilities P1, P2, . . .. Divide now each box i into subboxes i1, i2, . . . and define the
hitting probabilities of the subboxes by

P (ik) = PiP
(i)
k for k ∈ N,

where (P
(i)
k )k∈N is an independent copy of (Pk)k∈N. These subboxes are interpreted as the second

generation boxes which form the set I2. We repeat this procedure for boxes of each generation
until an ∞-ary tree of nested boxes ∪k∈N0Ik has been constructed. Here, N0 = N ∪ {0}.

We assume that the random probabilities of boxes and the outcome of throwing balls are
defined on a common probability space. For n, j, r ∈ N, denote by Kn,j,r the number of the jth
generation boxes υ ∈ Ij containing exactly r out of n first balls. Then the whole occupancy
pattern in j-th generation is expressed by

Kn,j(u) :=
n∑

r=dn1−ue

Kn,j,r, u ∈ [0, 1],

where d·e is the ceiling function.
For the given fragmentation law (Pk)k∈N, put N(t) :=

∑
k≥1 1{− logPk≤t}, V (t) = EN(t) for

t ≥ 0 and Vj(t) :=
∑

v∈Ij P{− logP (v) ≤ t} for j ∈ N, t ≥ 0.
Assume the following hold.

V (t) ∼ tα`(t), t→∞, (1)

for some α ≥ 0 and some ` slowly varying at ∞;

sup
t≥1

E(N(t))2

(V (t))2
<∞ (2)

and (N(ut)

V (t)

)
u≥0
⇒ (W (u))u≥0, t→∞, (3)

where ⇒ means weak convergence in the J1-topology on Skorokhod space D[0,∞) and
(W (u))u≥0 is an a.s. locally Hölder continuous process with exponent β > 0.
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Theorem 1. Suppose (1), (2) and (3). Then(( Kn,j(u)

(log n)αj(`(log n))j

)
u∈[0, 1]

)
j∈N
⇒

(
cj−1(Wj(u))u∈[0, 1]

)
j∈N

, n→∞.

in the product J1-topology on D[0, 1]N, where

cj :=
(Γ(1 + α))j

Γ(1 + αj)
, j ∈ N0,

Γ is the Euler gamma function and

Wj(u) :=

∫
[0, u]

(u− y)α(j−1)dW (y), u ≥ 0, j ∈ N.
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