ASYMPTOTIC PROPERTIES OF PARAMETER ESTIMATORS IN MIXED FRACTIONAL STOCHASTIC HEAT EQUATION

D. A. Avetisian, K. V. Ralchenko
Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
diana.avetisian2017@gmail.com, kostiantynralchenko@knu.ua

We consider the following stochastic heat equation

$$
\begin{equation*}
\left(\frac{\partial u}{\partial t}-\frac{1}{2} \cdot \frac{\partial^{2} u}{\partial x^{2}}\right)(t, x)=\sigma \dot{B}_{x}^{H}+\kappa \dot{W}_{x}, \quad t>0, x \in \mathbb{R}, \quad u(0, x)=0 \tag{1}
\end{equation*}
$$

The right-hand side of (1) is a mixed fractional noise. It consists of two independent stochastic processes, namely, a fractional Brownian motion $B^{H}=\left\{B_{x}^{H}, x \in \mathbb{R}\right\}$ with Hurst parameter $H \in(0,1)$ and a Wiener process $W=\left\{W_{x}, x \in \mathbb{R}\right\}$, independent of $B^{H} ; \sigma$ and κ are some positive coefficients.

Let G be Green's function of the heat equation, that is

$$
G(t, x)= \begin{cases}\frac{1}{\sqrt{2 \pi t}} \exp \left\{-\frac{x^{2}}{2 t}\right\}, & \text { if } t>0, \\ \delta_{0}(x), & \text { if } t=0\end{cases}
$$

We define a solution to SPDE (1) in a mild sense as follows

$$
\begin{equation*}
u(t, x)=\sigma \int_{0}^{t} \int_{\mathbb{R}} G(t-s, x-y) d B_{y}^{H} d s+\kappa \int_{0}^{t} \int_{\mathbb{R}} G(t-s, x-y) d W_{y} d s \tag{2}
\end{equation*}
$$

We prove the stationarity and ergodicity of the solution $u(t, x)$ as a function of the spatial variable x by analyzing the behavior of the covariance function.

It is supposed that for fixed t_{1}, \ldots, t_{n} and fixed step $\delta>0$, the random field u given by (2) is observed at the points $x_{k}=k \delta, k=1, \ldots, N$. So the observations have the following form:

$$
\left\{u\left(t_{i}, k \delta\right), i=1, \ldots, n, k=1, \ldots, N\right\} .
$$

The estimator of H is defined as

$$
\widehat{H}_{N}=f^{(-1)}\left(\frac{t_{3}^{-3 / 2} V_{N}\left(t_{3}\right)-t_{2}^{-3 / 2} V_{N}\left(t_{2}\right)}{t_{2}^{-3 / 2} V_{N}\left(t_{2}\right)-t_{1}^{-3 / 2} V_{N}\left(t_{1}\right)}\right),
$$

where $f^{(-1)}$ denotes the inverse function of

$$
f(H):= \begin{cases}\frac{t_{3}^{H-1 / 2}-t_{2}^{H-1 / 2}}{t_{2}^{H-1 / 2}-t_{1}^{H-1 / 2}}, & \text { if } H \neq \frac{1}{2} \\ \log t_{3}-\log t_{2} \\ \log t_{2}-\log t_{1} & \text { if } H=\frac{1}{2} .\end{cases}
$$

and

$$
V_{N}(t)=\frac{1}{N} \sum_{k=1}^{N} u(t, k \delta)^{2}, \quad t>0, N \in \mathbb{N}
$$

Theorem 1. 1. For any $H \in\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right), \widehat{H}_{N}$ is a strongly consistent estimator of the parameter H as $N \rightarrow \infty$.
2. For $H \in\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \frac{3}{4}\right)$, the estimator \widehat{H}_{N} is asymptotically normal:

$$
\sqrt{N}\left(\widehat{H}_{N}-H\right) \xrightarrow{d} \mathcal{N}\left(0, \varsigma^{2}\right) \quad \text { as } N \rightarrow \infty
$$

where

$$
\begin{gathered}
\varsigma^{2}=\frac{1}{D^{2} \sigma^{4} c_{H}^{2}} \sum_{i, j=1}^{3} r_{t_{i} t_{j}}(H) L_{i} L_{j}, \\
L_{1}=\frac{t_{3}^{H-\frac{1}{2}}-t_{2}^{H-\frac{1}{2}}}{t_{1}^{3 / 2}}, \quad L_{2}=\frac{t_{1}^{H-\frac{1}{2}}-t_{3}^{H-\frac{1}{2}}}{t_{2}^{3 / 2}}, \quad L_{3}=\frac{t_{2}^{H-\frac{1}{2}}-t_{1}^{H-\frac{1}{2}}}{t_{3}^{3 / 2}}, \\
D=\left(t_{2}^{H-\frac{1}{2}}-t_{1}^{H-\frac{1}{2}}\right)\left(t_{3}^{H-\frac{1}{2}} \log t_{3}-t_{2}^{H-\frac{1}{2}} \log t_{2}\right)-\left(t_{3}^{H-\frac{1}{2}}-t_{2}^{H-\frac{1}{2}}\right)\left(t_{2}^{H-\frac{1}{2}} \log t_{2}-t_{1}^{H-\frac{1}{2}} \log t_{1}\right), \\
c_{H}=\frac{2^{H+1}\left(2^{H}-1\right) \Gamma\left(H+\frac{1}{2}\right)}{\sqrt{\pi}(H+1)}, \quad r_{t_{i} t_{j}}(H)=2 \sum_{k=-\infty}^{\infty} \operatorname{cov}\left(u\left(t_{i}, k \delta\right), u\left(t_{j}, 0\right)\right)^{2} .
\end{gathered}
$$

Now we assume that the Hurst index H is known and investigate the estimation of the coefficients σ and κ :

$$
\widehat{\sigma}_{N}^{2}=\frac{t_{1}^{-3 / 2} V_{N}\left(t_{1}\right)-t_{2}^{-3 / 2} V_{N}\left(t_{2}\right)}{c_{H}\left(t_{1}^{H-1 / 2}-t_{2}^{H-1 / 2}\right)}, \quad \widehat{\kappa}_{N}^{2}=\frac{t_{1}^{-1-H} V_{N}\left(t_{1}\right)-t_{2}^{-1-H} V_{N}\left(t_{2}\right)}{c_{\frac{1}{2}}\left(t_{1}^{1 / 2-H}-t_{2}^{1 / 2-H}\right)} .
$$

Theorem 2. 1. For any $H \in\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right)$, $\left(\widehat{\sigma}_{N}^{2}, \widehat{\kappa}_{N}^{2}\right)$ is a strongly consistent estimator of the parameter $\left(\sigma^{2}, \kappa^{2}\right)$ as $N \rightarrow \infty$.
2. For $H \in\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, \frac{3}{4}\right)$, the estimator $\left(\widehat{\sigma}_{N}^{2}, \widehat{\kappa}_{N}^{2}\right)$ is asymptotically normal:

$$
\sqrt{N}\binom{\widehat{\sigma}_{N}^{2}-\sigma^{2}}{\widehat{\kappa}_{N}^{2}-\kappa^{2}} \xrightarrow{d} \mathcal{N}(0, \Sigma) \quad \text { as } N \rightarrow \infty
$$

where the asymptotic covariance matrix Σ consists of the following elements:

$$
\begin{gathered}
\Sigma_{11}=\frac{t_{1}^{-3}\left(r_{t_{1} t_{1}}(H)+r_{t_{1} t_{2}}(H)\right)+t_{2}^{-3}\left(r_{t_{1} t_{2}}(H)+r_{t_{2} t_{2}}(H)\right)}{c_{H}^{2}\left(t_{1}^{2 H-1}-2\left(t_{1} t_{2}\right)^{H-\frac{1}{2}}+t_{2}^{2 H-1}\right)} \\
\Sigma_{12}=\Sigma_{21}=\frac{t_{1}^{-\frac{5}{2}-H}\left(r_{t_{1} t_{1}}(H)+r_{t_{1} t_{2}}(H)\right)+t_{2}^{-\frac{5}{2}-H}\left(r_{t_{1} t_{2}}(H)+r_{t_{2} t_{2}}(H)\right)}{c_{H} c_{\frac{1}{2}}\left(2-t_{1}^{H-\frac{1}{2}} t_{2}^{\frac{1}{2}-H}-t_{1}^{\frac{1}{2}-H} t_{2}^{H-\frac{1}{2}}\right)}, \\
\Sigma_{22}=\frac{t_{1}^{-2-H}\left(r_{t_{1} t_{1}}(H)+r_{t_{1} t_{2}}(H)\right)+t_{2}^{-2-H}\left(r_{t_{1} t_{2}}(H)+r_{t_{2} t_{2}}(H)\right)}{c_{\frac{1}{2}}^{2}\left(t_{1}^{1-2 H}-2\left(t_{1} t_{2}\right)^{\frac{1}{2}-H}+t_{2}^{1-2 H}\right)}
\end{gathered}
$$

The quality of estimators is illustrated by simulation experiments.

1. D. Avetisian, K. Ralchenko, Parameter estimation in mixed fractional stochastic heat equation. Modern Stochastics: Theory and Applications, 2023, V. 10, No. 2, 175-195.
