ON THE STABILITY OF FINITE DIFFERENCE SCHEMES FOR NONLINEAR DIFFUSION EQUATIONS

Zineb Bouslah¹

¹Badji Mokhtar University, Annaba, Algeria z.bouslah23@gmai1.com

The Complex diffusion is a denoising procedure commonly used in image processing, such as noise removal, retouching, stereo vision or optical flow.

In particular, nonlinear complex scattering has proven to be a well-conditioned numerical technique that has been successfully applied in medical imaging.

The stability properties of a class of finite difference schemes for the complex nonlinear diffusion equation were studied by Araùjo.A and al. 2012. [1,2], where only explicit and implicit schemes were considered and no reaction terms were considered.

So t $\Omega \subset \mathbb{R}^d$, $d \ge 1$, the Cartesian product of open intervals of \mathbb{R} , with the boundary $\Gamma = \partial \Omega$,

$$\Omega = \prod_{j=1}^{d} \left[a_j, b_j \right],$$

with $a_j, b_j \in \mathbb{R}$. Let $Q = \Omega \times [0, T]$, with T > 0 and $u: \overline{Q} = \overline{\Omega} \times [0, T] \to C$. We consider a nonlinear diffusion process with a coefficient D non-constant complex $D(x, t, u) = D_R(x, t, u) + iD_I(x, t, u)$, where $D_R(x, t, u)$ and $D_I(x, t, u)$ are real functions. We must also assume that [1]

$$D_R(x,t,u) \ge 0, \qquad (x,t) \in \overline{Q},$$
(1)

and there is a constant L > 0 such that

$$0 < |D(x,t,u)| \leq L, \quad (x,t) \in \overline{Q}.$$
(2)

We define the initial boundary value problem for the unknown function u(x,t)

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) = Div\left(D\left(x,t,u\right)\nabla u\left(x,t\right)\right), & (x,t) \in Q, \\ u\left(x,0\right) = u^{0}\left(x\right), & x \in \overline{\Omega}, \\ \alpha u\left(x,t\right) + \beta \frac{\partial u}{\partial \nu}\left(x,t\right) = 0, & x \in \Gamma, \quad t \in [0,T], \end{cases}$$
(3)

where $\frac{\partial u}{\partial \nu}$ denotes the derivative in the direction of the exterior normal Ω on Γ . For the boundary conditions, we assume that

$$\alpha\beta = 0 \qquad et \qquad \alpha + \beta \neq 0.$$

We construite a mesh of \overline{Q} . For the time interval we consider the mesh [2]

$$0 = t^0 < t^1 < \dots < t^{(M-1)} < t^M = T,$$

where $M \ge 1$ is an integer $t^{m+1} - t^m = \Delta t^m$, m = 0, ..., M - 1.

Let h_k the mesh in the k - i eme spatial coordinate, such that $h_k = \frac{b_k - a_k}{N_k}$, for k = 1, ..., d, and $N_k \ge 2$ is an integer. Let $h = \max h_k$ et $k = \max \Delta t^m$. The set of points

$$x_j = (a_1 + j_1 h_1, ..., a_d + j_d), 0 \le j_k \le N_k, k = 1, ..., d,$$

http://www.imath.kiev.ua/~young/youngconf2023

defines a grid in space that we denote by $\overline{\Omega}_h$. We associate to the point (x_j, t^m) the coordinates $(j, m) = (j_1, ..., j_d, m)$.

We define a mesh of \overline{Q} , denoted by $\overline{Q_h^{\Delta t}}$, by the Cartesian product of the grid of space $\overline{\Omega}_h$ and a grid in the spatio-temporal domain. Let $Q_h^{\Delta t} = \underline{\overline{Q_h^{\Delta t}}} \cap Q$ and $\Gamma_h^{\Delta t} = \overline{\overline{Q_h^{\Delta t}}} \cap \Gamma \times [0, T]$.

We note V_j^m the value of a function V, defined in $\overline{Q_h^{\Delta t}}$, at point (x_j, t^m) .

We define the progressive and regressive finite difference operators at the point (x_j, t^m) à the k - ithth spatial coordinate,

$$\delta_k^+ V_j^m = \frac{V_{j+e_k}^m - V_j^m}{h_k}, \qquad \delta_k^- V_j^m = \frac{V_j^m - V_{j-e_k}^m}{h_k},$$

where e_k represents the k - it hth element of the canonical basis of \mathbb{R}^d .

The finite difference scheme approximating (3) in $Q_h^{\Delta t}$ is:

$$\begin{cases} \frac{U_j^{m+1}-U_j^m}{\Delta t} = \sum_{k=1}^d \delta_k^+ \left(D_{j-(1/2)e_k}^{m+\theta} \delta_k^- U_j^{m+\theta} \right), & \operatorname{sur} \widetilde{Q}_h^{\Delta t}, \\ U_j^0 = u_0(x_j), & \operatorname{sur} \overline{\Omega}_h, \\ \alpha U_j^m + \frac{\beta}{2} \sum_{k=1}^d (\delta_k^+ U_j^m + \delta_k^- U_j^m) . \nu_k = 0, & \operatorname{sur} \Gamma_h^{\Delta t}, \end{cases}$$
(4)

where $V_j^{m+\theta} = \theta V_j^{m+1} + (1-\theta) V_j^m$, $\theta \in [0,1]$, U_j^m represents the approximation of $u(x_j, t^m)$ and

$$D_{j-(1/2)e_k}^m = \frac{D(x_j, t^m, U_j^m) + D(x_{j-e_k}, t^m, U_{j-e_k}^m)}{2}$$

The stability of the finite difference scheme (3). In the following theorem, we give the stability conditions for the θ – schema [2].

Theorem 1. Assume that the conditions (1) and (2) hold. If $\theta \in [\frac{1}{2}, 1]$ then the method (4) is unconditionally stable. If $\theta \in [0, \frac{1}{2}[$ then the schema (4) is stable if the condition

$$\Delta t \le \frac{(\min\{h_1, ..., h_d\})^2}{2d(1 - 2\theta) \max_{x_j \in \overline{\Omega}_h} \frac{|D_j^{m+\theta}|^2}{D_{R_j}^{m+\theta}}}, \quad m = 1, ..., M - 1,$$

holds, provided there is some ξ such that

$$0 < \xi \le D_{R_i}^{m+\theta} \qquad \forall j, m \in Q_h^{\Delta t}.$$

- Araùjo A., Barbeiro S., Serranho P. Stability of finit difference schemes for complex diffusion processes, SIAM J. Num. Anal., 2012, 50, 1284-1296.
- Araùjo A., Barbeiro S., Serranho P. Finite difference schemes for nonlinear complex reactiondiffusion processes. SIAM J. Num-Anal., 2014.