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The Complex diffusion is a denoising procedure commonly used in image processing, such
as noise removal, retouching, stereo vision or optical flow.

In particular, nonlinear complex scattering has proven to be a well-conditioned numerical
technique that has been successfully applied in medical imaging.

The stability properties of a class of finite difference schemes for the complex nonlinear
diffusion equation were studied by Araùjo.A and al. 2012. [1,2], where only explicit and
implicit schemes were considered and no reaction terms were considered.

Soit Ω ⊂ Rd, d > 1, the Cartesian product of open intervals of R, with the boundary
Γ = ∂Ω,

Ω =
d∏
j=1

]aj, bj[ ,

with aj, bj ∈ R. Let Q = Ω × [0, T ], with T > 0 and u:Q = Ω × [0, T ] → C. We con-
sider a nonlinear diffusion process with a coefficient D non-constant complex D (x, t, u) =
DR (x, t, u) + iDI (x, t, u), where DR (x, t, u) and DI (x, t, u) are real functions. We must also
assume that [1]

DR (x, t, u) > 0, (x, t) ∈ Q, (1)

and there is a constant L > 0 such that

0 < |D (x, t, u)| 6 L, (x, t) ∈ Q. (2)

We define the initial boundary value problem for the unknown function u(x, t)
∂u
∂t

(x, t) = Div (D (x, t, u)∇u (x, t)) , (x, t) ∈ Q,
u (x, 0) = u0 (x) , x ∈ Ω,
αu (x, t) + β ∂u

∂ν
(x, t) = 0, x ∈ Γ, t ∈ [0, T ] ,

(3)

where ∂u
∂ν

denotes the derivative in the direction of the exterior normal Ω on Γ.
For the boundary conditions, we assume that

αβ = 0 et α + β 6= 0.

We construite a mesh of Q. For the time interval we consider the mesh [2]

0 = t0 < t1 < · · · < t(M−1) < tM = T,

where M ≥ 1 is an integer tm+1 − tm = ∆tm, m = 0, ...,M − 1.
Let hk the mesh in the k − ième spatial coordinate, such that hk = bk−ak

Nk
, for k = 1, ..., d,

and Nk ≥ 2 is an integer. Let h = maxhk et k = max ∆tm. The set of points

xj = (a1 + j1h1, ..., ad + jd), 0 ≤ jk ≤ Nk, k = 1, ..., d,
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defines a grid in space that we denote by Ωh. We associate to the point (xj, t
m) the coordinates

(j,m) = (j1, ..., jd,m).
We define a mesh of Q, denoted by Q∆t

h , by the Cartesian product of the grid of space Ωh

and a grid in the spatio-temporal domain. Let Q∆t
h = Q∆t

h ∩Q and Γ∆t
h = Q∆t

h ∩ Γ× [0, T ].
We note V m

j the value of a function V , defined in Q∆t
h , at point (xj, t

m).
We define the progressive and regressive finite difference operators at the point (xj, t

m) à
the k − it̀hth spatial coordinate,

δ+
k V

m
j =

V m
j+ek
− V m

j

hk
, δ−k V

m
j =

V m
j − V m

j−ek
hk

,

where ek represents the k − it́hth element of the canonical basis of Rd.

The finite difference scheme approximating (3) in
∼
Q∆t
h is:

Um+1
j −Umj

∆t
=
∑d

k=1 δ
+
k

(
Dm+θ
j−(1/2)ek

δ−k U
m+θ
j

)
, sur

∼
Q∆t
h ,

U0
j = u0(xj), sur Ωh,

αUm
j + β

2

∑d
k=1(δ+

k U
m
j + δ−k U

m
j ).νk = 0, sur Γ∆t

h ,

(4)

where V m+θ
j = θV m+1

j + (1 − θ)V m
j , θ ∈ [0, 1], Um

j represents the approximation of u(xj, t
m)

and

Dm
j−(1/2)ek

=
D(xj, t

m, Um
j ) +D(xj−ek , t

m, Um
j−ek)

2
.

The stability of the finite difference scheme (3). In the following theorem, we give the
stability conditions for the θ − schema [2].

Theorem 1. Assume that the conditions (1) and (2) hold. If θ ∈ [1
2
, 1] then the method (4)

is unconditionally stable. If θ ∈ [0, 1
2
[ then the schema (4) is stable if the condition

∆t ≤ (min{h1, ..., hd})2

2d(1− 2θ) max
xj∈Ωh

|Dm+θ
j |2
Dm+θ
Rj

, m = 1, ...,M − 1,

holds, provided there is some ξ such that

0 < ξ ≤ Dm+θ
Rj

∀j,m ∈ Q∆t
h .
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