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Based on Izhikhevich’s resonate-and-fire model [1] of the temporal evolution of membrane
potential, we derive a kinetic Fokker-Planck equation describing the probability density ρ(x, v, t)
of finding neurons in a population having a potential x, with a time derivative v, at a given
time t, other models having already been studied in, for example [2], [3], or [4].

The equation reads

∀x ≤ uF ,
∂p(x,v,t)

∂t
+∇(µp(x, v, t)−D∇p(x, v, t)) = δuR(x)⊗ δ0(v)N(t),

N(t) =
∫
v∈R+ v.p(uF , v, t)dv,

∀v, p(−∞, v, t) = 0;∀v < 0, p(uF , v, t) = 0
∀x > uF , ∀v, p(x, v, t) = 0, p0(x, v) ≥ 0,

∫ uF
−∞

∫∞
−∞ p

0(x, v)dxdv = 1

with µ(x, v, t) =

(
v

−ω2
0x− v/τ + bN(t)/τ + bνext/τ

)
and D = (a0 + a1N(t))

[
0 0
0 1/τ 2

]
a0, a1, b, ν, ω0, τ being neurological constants.

Let us define the following open subset of R2 : Ω = (−∞, uF ) × R. Now let us first define
some notions of solutions that will allow us to work on the problem:

Definition 1. A pair of functions (p,N) is said to be a strong solution of the system (P)
on [0;T [, T ∈ R∗+ ∩∞ when :

• p ∈ C0(] − ∞, uF ]×] − ∞,∞[×) ∩ C2,2,1(] − ∞, uR[∪]uR, uF ]×] − ∞,∞[×[0, T [) ∩
L∞([0, T [, L1(]−∞, uF ]×]−∞,∞[)) and N ∈ C0([0, T [)

• The functions p and N are solutions of (P) in the the classical sense on ] −
∞, uR[∪]uR, uF ]×]−∞,∞[ and in the sense of distributions on ]−∞;uF ]×]−∞,∞[.

Definition 2. A pair of non-negative functions (p,N) with p ∈ L∞(R+;L2
+((−∞, uF )×]−

∞,∞[)), N ∈ L1
loc,+(R+) is a weak solution of the problem (P) if for any test function

φ((x, v), t) ∈ C∞(]−∞;uF ]×]−∞,∞[×[0;T ]) such that v ∂φ
∂x
, (x + v)∂φ

∂v
∈ L∞(]−∞;uF [×]−

∞,∞[×]0;T [), we have

∫ T
0

uF∫
x=−∞

∞∫
v=−∞

p(x, v, t)[−∂φ
∂t
− µ(x, v, t)∇φ−∇(D(t)∇φ)] dxdvdt =∫ T

0
N(t)(φ(uR, 0, t)− φ(uF , 0, t)) dt+

uF∫
−∞

+∞∫
−∞

p0(x, v)φ(x, v, 0) dxdv

−
uF∫
−∞

+∞∫
−∞

p(x, v, T )φ(x, v, T ) dxdv

We could obtain the following theorem:
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Theorem 1. Let p0 be in L2(R2 ×R+;R), and (p,N) a weak solution of our problem (P ),
with p0 verifying the following conditions, denoted (C) :

∫
(x,v)∈R2

p0(x, v) dxdv = 1; ∀(x, v) ∈

R2, p0(x, v) ≥ 0 ; p0 = 0 a.e. on ∂Ωhyp and p being possibly negative for t > 0 meanwhile
∀t ≥ 0, N(t) ≥ 0. Then : ∀t ≥ 0,

∫
(x,v)∈Ω

p(x, v, t) dxdv = 1 and ∀t ≥ 0, p(x, v, t) ≥ 0 a.e. in Ω

Even though we could obtain some numerical approximations of the solutions, the classical
toolbox associated with linear operators cannot be used because of the non-local linearity due
to the function N , which makes the theoretical study complicated. Thus, to obtain more
information, we then focus on a linearized version of the equation around 0, tackling the study
of a boundary value Cauchy problem for an hypoelliptic operator, using different methods and
approaches. In this linearized version, the function N disappears from the drift vector µL and
the diffusion matrix.

On top of the degeneracy of the problem, the difficulties associated with the right-hand side
of the equation, which displays a non-local dependency on the solution as well as a measure,
are of course of prime concern.

We will present steps towards existence and uniqueness in this difficult case by simplify-
ing this right-hand side and imposing some boundedness on the spatial variable x, using the
framework developped in [5] :

Theorem 2. If we consider Ω =]xmin;xmax[×R, noting QT the classical parabolic cylinder
associated with Ω, if p0 is in L2(Ω), the right-hand side f is in L2(QT ) we have existence and
uniqueness of a solution to the linearized problem for all initial conditions verifying (C), the
solution being in the space Y = {p ∈ H : T p ∈ H ′}, with H = {p ∈ L2(QT ) : ∇vp ∈ L2(QT )}
and T p = ∂tp+ µL.∇p.

As well as another result, this time in the unbounded setting, displaying similarities but
still with radically different methods and point of view in the line of the work in [6] and [7].

Theorem 3. For any boundary condition in C0(∂Ω) × R, there exists an unique weak
solution p verifying p ∈ L2

v,t(Ωv×]0, T [, H1
x(Ωx)) and ∂tp+ µL.∇p ∈ L2

v,t(Ωv×]0, T [, H−1
x (Ωx)).

Some associated results (conservation of positivity, convergence of the transport trajectories
in the Wasserstein metric) which allow for a better understanding of the problem, will also be
presented.
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