An Approach for solving a Hamilton -Jacobi Type
 PROBLEM WITH FRACTIONAL DIFFUSION

A. Younes
University of Abou Bekr Belkaid, Tlemcen, Algeria.
abdelbadieyounes@gmail.com

We study in our paper a class of Dirichlet-type boundary value problems that are driven by the fractional Laplacian. More precisely, let $\Omega \subset \mathbb{R}^{N}, N \geq 2$, be a bounded domain with boundary $\partial \Omega$ of class C^{2}. For $s \in(0,1)$ and f in a suitable Lebesgue space, we discuss, first the following fractional Poisson problem

$$
\left\{\begin{align*}
(-\Delta)^{s} u=f, & \text { in } \Omega, \tag{1}\\
u=0, & \text { in } \mathbb{R}^{N} \backslash \Omega,
\end{align*}\right.
$$

where $(-\Delta)^{s}$ is the classical fractional Laplacian defined, for $s \in(0,1)$, by

$$
\begin{equation*}
(-\Delta)^{s} u(x):=a_{N, s} \lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{N} \backslash B_{\epsilon}(0)} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} d y \tag{2}
\end{equation*}
$$

with

$$
a_{N, s}:=2^{2 s-1} \pi^{-\frac{N}{2}} \frac{\Gamma\left(\frac{N+2 s}{2}\right)}{|\Gamma(-s)|}
$$

Here, Γ is the Gamma function.
Our primary goal is to obtain a global fractional Calderón-Zygmund regularity theory for problem (1). Our main result in that direction reads as follows

Theorem 1. Assume that $s \in(0,1)$ and let $f \in L^{m}(\Omega)$ with $m \geq 1$ and u be the unique solution to the fractional Poisson problem (1). Then, we have

1. If $1 \leq m<\frac{N}{s}$, then for all $1 \leq p<\frac{m N}{N-m s}$, there exists a positive constant $C=$ $C(N, s, p, m, \Omega)$ such that

$$
\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{p}\left(\mathbb{R}^{N}\right)} \leq C\|f\|_{L^{m}(\Omega)}
$$

2. $m \geq \frac{N}{s}$, then for all $1 \leq p<\infty$, there exists a positive constant $C=C(N, s, p, m, \Omega)$ such that

$$
\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{p}\left(\mathbb{R}^{N}\right)} \leq C\|f\|_{L^{m}(\Omega)}
$$

Our proofs can be found in [1] and are based on a pointwise estimate of the fractional gradient of the Green's function associated to the fractional Laplacian.

As an application, using a fixed point argument, we obtain existence results for the Hamilton-Jacobi KPZ type problem below

$$
\left\{\begin{align*}
(-\Delta)^{s} u & =\mu(x)\left|\mathbb{D}_{s}(u)\right|^{q}+\rho f(x), & & \text { in } \Omega \tag{3}\\
u & =0, & & \text { in } \mathbb{R}^{N} \backslash \Omega
\end{align*}\right.
$$

http://www.imath.kiev.ua/~young/youngconf2023
where $q>1, \rho>0, \mu \in L^{\infty}(\Omega)$ and \mathbb{D}_{s} represents one of the following nonlocal "gradient terms"

$$
\left.\begin{array}{l}
\circ \quad \operatorname{Grad}_{1}=(-\Delta)^{\frac{s}{2}} u(x):=a_{N, \frac{s}{2}} \lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{N} \backslash B_{\epsilon}(0)} \frac{u(x)-u(y)}{|x-y|^{N+s}} d y \\
\text { (Half } \left.s \text {-Laplacian), (} \operatorname{Grad}_{1}\right) \\
\circ \quad \operatorname{Grad}_{2}=\nabla^{s} u(x):=\mu_{N, s} \int_{\mathbb{R}^{N}} \frac{(x-y)(u(x)-u(y))}{|x-y|^{N+s+1}} d y \tag{Grad}\\
\circ \quad \operatorname{Grad}_{2}=\mathcal{D}_{s} u(x):=\left(\frac{a_{N, s}}{2} \int_{\mathbb{R}^{N}} \frac{(u(x)-u(y))^{2}}{|x-y|^{N+2 s}} d y .\right)^{\frac{1}{2}}
\end{array} \text { (Siesz s-Gradient),(Grad} 2\right) ~\left(\operatorname{Grain}_{2} s\right. \text {-Functional).. }
$$

Here

$$
a_{N, \sigma}:=\frac{2^{2 \sigma-1} \Gamma\left(\frac{N}{2}+\sigma\right)}{\pi^{\frac{N}{2}}|\Gamma(-\sigma)|} \quad \text { and } \quad \mu_{N, \sigma}:=\frac{2^{\sigma} \Gamma\left(\frac{N+\sigma+1}{2}\right)}{\pi^{\frac{N}{2}} \Gamma\left(\frac{1-\sigma}{2}\right)},
$$

are normalization constants.
In fact, having at hand statement 1 above we can use the Schauder fixed point theorem to derive our main existence result for problem (3).

Theorem 2. Let $s \in(0,1)$ and assume that $f \in L^{m}(\Omega)$ where $m \geq 1$ and $m \geq \frac{2 N}{N+2 s}$ if $\mathbb{D}_{s}=\mathcal{D}_{s}$. Then, there exists $\bar{q}=\bar{q}(m, s)$ such that for all $1<q<\bar{q}$, problem (3) has a weak solution, for ρ small enough.

Moreover, the smallness of ρ is proven to be, not only sufficient but also necessary to solve problem (3) in case $\mathbb{D}_{s}=(-\Delta)^{\frac{s}{2}}$ or $\mathbb{D}_{s}=\mathcal{D}_{s}$, according to the following theorems

Theorem 3. Let $0<s<1, \mu_{2} \geq \mu(x) \geq \mu_{1}>0, f \in L^{1}(\Omega)$ with $f \supsetneqq 0$ and $q>\frac{2(s+1)}{s+2}$. Then, if $\mathbb{D}_{s}=(-\Delta)^{\frac{s}{2}}$, (3) has no weak solution for ρ large.

Theorem 4. Let $0<s<1, \mu_{2} \geq \mu(x) \geq \mu_{1}>0, f \in L^{1}(\Omega)$ with $f^{+} \not \equiv 0$ and $q>1$. Then, if $\mathbb{D}_{s}=\mathcal{D}_{s}$, (3) has no weak solution for ρ large.

We invite the reader to check [2] for the detailed proofs of Theorems 2, 3 and 4.

1. B. Abdellaoui, A.J. Fernández, T. Leonori, A. Younes, Global fractional Calderón-Zygmund regularity, 2022. https://arxiv.org/pdf/2107.06535.pdf.
2. B. Abdellaoui, A. J. Fernández, T. Leonori, and A. Younes. Deterministic kpz-type equations with nonlocal "gradient terms". Annali di Matematica Pura ed Applicata (1923-), 2023, 202(3), 1451-1468. https://doi.org/10.1007/s10231-022-01288-6 .
