LIEB-THIRRING INEQUALITIES IN HYPERBOLIC SPACE

T. R. Weinmann¹

¹Imperial College London, London, United Kingdom *t.weinmann21@imperial.ac.uk*

Consider a Schrödinger operator $-\Delta - V$ on $L^2(\mathbb{R}^n)$, where V is a real-valued function. In their celebrated 1976 paper [1], Lieb and Thirring proved that

$$tr \left(-\Delta - V\right)_{-}^{\gamma} \le L_{\gamma,n} \int_{\mathbb{R}^n} V_+^{\gamma+n/2} dx$$

holds true for finite constants $L_{\gamma,n}$ as long as $\gamma > \max(0, 1 - n/2)$. In the case $n = 3, \gamma = 0$ this bound is known as the Cwikel-Lieb-Rozenblum (CLR) inequality and was proven by the three independently from each other, see [2] for instance. The second critical case $n = 1, \gamma = 1/2$ was settled by Weidl in 1996 [3]. The inequality is known to fail for $n = 2, \gamma = 0$. For a comprehensive treatment of the subject, see [4].

We use a lifting argument to extend the Lieb–Thirring inequality to hyperbolic spaces, obtaining

Theorem 1. Let $\gamma \geq 1/2$ and $n \geq 2$. Then there exists a constant $L_{\gamma,n}$ such that for all real-valued functions Q defined on \mathbb{H}^n for which $Q \in L^{\gamma+n/2}(\mathbb{H}^n, dV)$ holds, the eigenvalues $-\lambda_k = (n-1)^2/4 - \mu_k$ of the operator $-\Delta_{\mathbb{H}^n} - Q$ satisfy

$$\sum_{k} \mu_{k}^{\gamma} \leq L_{\gamma,n} \int_{\mathbb{H}^{n}} Q_{+}^{\gamma+n/2} dV,$$

where dV is the Riemannian volume on \mathbb{H}^n and $-\Delta_{\mathbb{H}^n}$ is the Laplace-Beltrami operator.

The talk is based on a forthcoming paper with Ari Laptev.

- Lieb E. H., Thirring W. E. Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities, Studies in Mathematical Physics, 1976, 269–303
- Rozenblum G. V. Distribution of the discrete spectrum of singular differential operators. Dokl. Akad. Nauk SSSR, 1972, 202, 1012–1015
- 3. Weidl T. On the Lieb-Thirring constants $L_{\gamma,1}$ for $\gamma \ge 1/2$. Communications in Mathematical Physics, 1996, 1, 135–146
- Frank R., Laptev A., Weidl T. Schrödinger Operators: Eigenvalues and Lieb–Thirring Inequalities. – Cambridge: Cambridge University Press, 2022, 508 p.