On ERROR ESTIMATES FOR THE APPROXIMATION Of solutions To general boundary-value problems

V. O. Soldatov
Institute of Mathematics, Kyiv, Ukraine
soldatov@imath.kiev.ua, soldatovvo@ukr.net

We present some results on the approximation of solutions to a one-dimensional boundaryvalue problem of the form

$$
\begin{equation*}
L y(t) \equiv y^{(r)}(t)+\sum_{l=1}^{r} A_{r-l}(t) y^{(r-l)}(t)=f(t) \text { for almost all } t \in[a, b], \quad B y=q \tag{1}
\end{equation*}
$$

Here, $r, m \in \mathbb{N}, a, b \in \mathbb{R}, a<b$, each $A_{r-l} \in\left(L_{1}\right)^{m \times m}, f \in\left(L_{1}\right)^{m}, q \in \mathbb{C}^{r m}$, and the continuous linear operator $B:\left(C^{(r-1)}\right)^{m} \rightarrow \mathbb{C}^{r m}$ are chosen arbitrarily. The solution y is considered in the Sobolev space $\left(W_{1}^{r}\right)^{m}$. This boundary-value problem is called general by analogy with the $r=1$ case. All function spaces are complex and given on $[a, b]$. We assume that problem (1) has a unique solution $y \in\left(W_{1}^{r}\right)^{m}$ for arbitrary $f \in\left(L_{1}\right)^{m}$ and $q \in \mathbb{C}^{r m}$.

Consider a sequence of general boundary-value problems

$$
\begin{equation*}
L_{k} y_{k}(t) \equiv y_{k}^{(r)}(t)+\sum_{l=1}^{r} A_{r-l, k}(t) y_{k}^{(r-l)}(t)=f(t) \text { for almost all } t \in[a, b], \quad B_{k} y_{k}=q \tag{2}
\end{equation*}
$$

depending on $k \in \mathbb{N}$ such that, for all $f \in\left(L_{1}\right)^{m}$ and $q \in \mathbb{C}^{r m}$, each problem (2) has a unique solution $y_{k} \in\left(W_{1}^{r}\right)^{m}$, and $y_{k} \rightarrow y$ in $\left(W_{1}^{r}\right)^{m}$ as $k \rightarrow \infty$.

Specifically [1, Theorem 1], such a sequence exists and is built explicitly in the class of multi-point boundary-value problems, where each $A_{r-l, k}$ belongs to an arbitrarily chosen dense subset of $\left(L_{1}\right)^{m \times m}$ and

$$
B_{k} y_{k} \equiv \sum_{j=1}^{p_{k}} \sum_{l=0}^{r-1} \beta_{k}^{j, l} y^{(l)}\left(t_{k, j}\right)
$$

with all $p_{k} \in \mathbb{N}, \beta_{k}^{j, l} \in \mathbb{C}^{r m \times m}$, and $t_{k, j} \in[a, b]$.
Suppose that the data of problems (2) depend on k, i.e.

$$
\begin{equation*}
L_{k} x_{k}(t)=f_{k}(t) \text { for almost all } t \in[a, b], \quad B_{k} x_{k}=q_{k}, \tag{3}
\end{equation*}
$$

where $f_{k} \in\left(L_{1}\right)^{m}, q_{k} \in \mathbb{C}^{r m}$, and $x_{k} \in\left(W_{1}^{r}\right)^{m}$. We present estimates for the approximation error $x_{k}-y$ in the normed spaces $\left(W_{1}^{r}\right)^{m}$ and $\left(C^{(r-1}\right)^{m}$.

Theorem 1. Let $\varepsilon>0$ and $\widehat{\varrho} \in \mathbb{N}$. Suppose that

$$
\begin{equation*}
\left\|f_{k}-f,\left(L_{1}\right)^{m}\right\|<\varepsilon \text { and }\left\|q_{k}-q, \mathbb{C}^{r m}\right\|<\varepsilon \text { whenever } k \geq \widehat{\varrho} . \tag{4}
\end{equation*}
$$

Then there exist positive numbers \varkappa and $\varrho \geq \widehat{\varrho}$ such that

$$
\left\|x_{k}-y,\left(W_{1}^{r}\right)^{m}\right\|_{r, 1}<\varkappa \varepsilon \text { whenever } k \geq \varrho .
$$

The number \varkappa can be chosen independently of $\varepsilon, \widehat{\varrho}, f, q, f_{k}$, and q_{k}, whereas the number ϱ can be chosen independently of f_{k} and q_{k}.
http://www.imath.kiev.ua/~young/youngconf2023

Let F and F_{k} denote the primitives of f and f_{k} on $[a, b]$ subject to $F(a)=0$ and $F_{k}(a)=0$, resp.

Theorem 2. Let $\varepsilon>0$ and $\widehat{\varrho} \in \mathbb{N}$. Suppose that

$$
\begin{equation*}
\left\|F_{k}-F,\left(C^{(0)}\right)^{m}\right\|<\varepsilon \text { and }\left\|q_{k}-q, \mathbb{C}^{r m}\right\|<\varepsilon \text { whenever } k \geq \widehat{\varrho} \tag{5}
\end{equation*}
$$

and that

$$
\sigma:=\sup \left\{\left\|B_{k}:\left(C^{(r-1)}\right)^{m} \rightarrow \mathbb{C}^{r m}\right\|: k \geq \widehat{\varrho}\right\}<\infty
$$

Then there exist positive numbers \varkappa and $\varrho \geq \widehat{\varrho}$ such that

$$
\begin{equation*}
\left\|x_{k}-y,\left(C^{(r-1)}\right)^{m}\right\|<\varkappa \sigma \varepsilon \text { whenever } k \geq \varrho . \tag{6}
\end{equation*}
$$

The number \varkappa can be chosen independently of $\varepsilon, \widehat{\varrho}, \sigma, f, q$, and problems (2) (i.e. \varkappa depends only on L and B), whereas ϱ can be chosen independently of f_{k} and q_{k}.

Comparing these theorems, we note that condition (5) is weaker than (4) and that the norm in $C^{(r-1)}$ is weaker than the norm in W_{1}^{r}.

The number \varkappa in (6) can be explicitly indicated. Namely, if $r=1$, we may take

$$
\begin{equation*}
\varkappa:=\left(c_{1}+c_{2}\right) \lambda+c_{1} c_{2}+1, \tag{7}
\end{equation*}
$$

where

$$
\begin{gathered}
c_{1}:=1+\left\|Y,\left(C^{(0)}\right)^{m \times m}\right\| \cdot\left\|[B Y]^{-1}, \mathbb{C}^{m \times m}\right\|, \\
c_{2}:=2+\left\|Y,\left(C^{(0)}\right)^{m \times m}\right\| \cdot\left\|Y^{-1},\left(C^{(0)}\right)^{m \times m}\right\| \cdot\left\|A,\left(L_{1}\right)^{m \times m}\right\|, \\
\lambda:=\left\|B:\left(C^{(0)}\right)^{m} \rightarrow \mathbb{C}^{m}\right\|^{-1} .
\end{gathered}
$$

Here, Y is the matriciant of the differential system

$$
L y(t) \equiv y^{\prime}(t)+A(t) y(t)=f(t)
$$

related to the point $t=a$, and $[B Y]$ is the $m \times m$-matrix whose columns equal the value of B at the corresponding columns of Y. We let the norm of a vector-valued function equal the sum of the norms of its components, and we let the norm of a matrix-valued function equal the maximum of the norms of its columns.

If $r \geq 2$, we may define \varkappa by formula (7), where

$$
\begin{gathered}
c_{1}:=1+\left\|V,\left(C^{(0)}\right)^{r m \times r m}\right\| \cdot\left\|\left[B V^{\circ}\right]^{-1}, \mathbb{C}^{r m \times r m}\right\|, \\
c_{2}:=2+\left\|V,\left(C^{(0)}\right)^{r m \times r m}\right\| \cdot\left\|V^{-1},\left(C^{(0)}\right)^{r m \times r m}\right\|\left(b-a+\left\|A_{r-1},\left(L_{1}\right)^{m \times m}\right\|\right), \\
\lambda:=\left\|B:\left(C^{(r-1)}\right)^{m} \rightarrow \mathbb{C}^{r m}\right\|^{-1}
\end{gathered}
$$

Here, V is the matriciant of the system (1) reduced to first-order system and related to the point $t=a ; V^{\circ}$ is the $m \times r m$-matrix function formed by the first m rows of V, and $\left[B V^{\circ}\right]$ is defined similarly to $[B Y]$.

If each problem (3) is multi-point, these theorems are proved in [1].

1. Murach A. A., Pelekhata O. B., Soldatov V. O. Approximation properties of solutions to multipoint boundary-value problems. Ukrainian Math. J., 2021, 73, no. 3, 399-413.
(arXiv:2012.15604)
http://www.imath.kiev.ua/~young/youngconf2023
