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We present some results on the approximation of solutions to a one-dimensional boundary-
value problem of the form

Ly(t) ≡ y(r)(t) +
r∑

l=1

Ar−l(t) y
(r−l)(t) = f(t) for almost all t ∈ [a, b], By = q. (1)

Here, r,m ∈ N, a, b ∈ R, a < b, each Ar−l ∈ (L1)
m×m, f ∈ (L1)

m, q ∈ Crm, and the continuous
linear operator B : (C(r−1))m → Crm are chosen arbitrarily. The solution y is considered in
the Sobolev space (W r

1 )
m. This boundary-value problem is called general by analogy with the

r = 1 case. All function spaces are complex and given on [a, b]. We assume that problem (1)
has a unique solution y ∈ (W r

1 )
m for arbitrary f ∈ (L1)

m and q ∈ Crm.
Consider a sequence of general boundary-value problems

Lk yk(t) ≡ y
(r)
k (t) +

r∑
l=1

Ar−l,k(t) y
(r−l)
k (t) = f(t) for almost all t ∈ [a, b], Bk yk = q (2)

depending on k ∈ N such that, for all f ∈ (L1)
m and q ∈ Crm, each problem (2) has a unique

solution yk ∈ (W r
1 )

m, and yk → y in (W r
1 )

m as k →∞.
Specifically [1, Theorem 1], such a sequence exists and is built explicitly in the class of

multi-point boundary-value problems, where each Ar−l,k belongs to an arbitrarily chosen dense
subset of (L1)

m×m and

Bk yk ≡
pk∑
j=1

r−1∑
l=0

βj,l
k y(l)(tk,j),

with all pk ∈ N, βj,l
k ∈ Crm×m, and tk,j ∈ [a, b].

Suppose that the data of problems (2) depend on k, i.e.

Lk xk(t) = fk(t) for almost all t ∈ [a, b], Bk xk = qk, (3)

where fk ∈ (L1)
m, qk ∈ Crm, and xk ∈ (W r

1 )
m. We present estimates for the approximation

error xk − y in the normed spaces (W r
1 )

m and (C(r−1)m.

Theorem 1. Let ε > 0 and %̂ ∈ N. Suppose that

‖fk − f, (L1)
m‖ < ε and ‖qk − q,Crm‖ < ε whenever k ≥ %̂. (4)

Then there exist positive numbers κ and % ≥ %̂ such that

‖xk − y, (W r
1 )

m‖r,1 < κ ε whenever k ≥ %.

The number κ can be chosen independently of ε, %̂, f , q, fk, and qk, whereas the number % can
be chosen independently of fk and qk.
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Let F and Fk denote the primitives of f and fk on [a, b] subject to F (a) = 0 and Fk(a) = 0,
resp.

Theorem 2. Let ε > 0 and %̂ ∈ N. Suppose that

‖Fk − F, (C(0))m‖ < ε and ‖qk − q,Crm‖ < ε whenever k ≥ %̂ (5)

and that
σ := sup

{
‖Bk : (C

(r−1))m → Crm‖ : k ≥ %̂
}
<∞.

Then there exist positive numbers κ and % ≥ %̂ such that

‖xk − y, (C(r−1))m‖ < κ σ ε whenever k ≥ %. (6)

The number κ can be chosen independently of ε, %̂, σ, f , q, and problems (2) (i.e. κ depends
only on L and B), whereas % can be chosen independently of fk and qk.

Comparing these theorems, we note that condition (5) is weaker than (4) and that the norm
in C(r−1) is weaker than the norm in W r

1 .
The number κ in (6) can be explicitly indicated. Namely, if r = 1, we may take

κ := (c1 + c2)λ+ c1c2 + 1, (7)

where

c1 := 1 + ‖Y, (C(0))m×m‖ · ‖[BY ]−1,Cm×m‖,
c2 := 2 + ‖Y, (C(0))m×m‖ · ‖Y −1, (C(0))m×m‖ · ‖A, (L1)

m×m‖,
λ := ‖B : (C(0))m → Cm‖−1.

Here, Y is the matriciant of the differential system

Ly(t) ≡ y′(t) + A(t)y(t) = f(t)

related to the point t = a, and [BY ] is the m × m-matrix whose columns equal the value of
B at the corresponding columns of Y . We let the norm of a vector-valued function equal the
sum of the norms of its components, and we let the norm of a matrix-valued function equal the
maximum of the norms of its columns.

If r ≥ 2, we may define κ by formula (7), where

c1 := 1 + ‖V, (C(0))rm×rm‖ · ‖[BV ◦]−1,Crm×rm‖,
c2 := 2 + ‖V, (C(0))rm×rm‖ · ‖V −1, (C(0))rm×rm‖ (b− a+ ‖Ar−1, (L1)

m×m‖),
λ := ‖B : (C(r−1))m → Crm‖−1.

Here, V is the matriciant of the system (1) reduced to first-order system and related to the
point t = a; V ◦ is the m× rm-matrix function formed by the first m rows of V , and [BV ◦] is
defined similarly to [BY ].

If each problem (3) is multi-point, these theorems are proved in [1].
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