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In paper [1], we prove the weak Harnack inequality for the functions u which belong to the
corresponding De Giorgi classes DG−(Ω) under the additional assumption that u ∈ Lsloc(Ω)
with some s > 0. In particular, our result covers new cases of functionals with a variable
exponent or double-phase functionals under the non-logarithmic condition.

Definition 1. We write W 1,Φ(·)(Ω) for the class of functions u ∈ W 1,1(Ω) with∫
Ω

Φ(x, |∇u|)dx < ∞ and we say that a measurable function u : Ω → R belongs to the el-

liptic class DG±Φ (Ω) if u ∈ W 1,Φ(·)(Ω) and there exist numbers c > 0, q > 1 such that for any
ball B8r(x0) ⊂ Ω, any k ∈ R and any σ ∈ (0, 1) the following inequalities hold:∫

A±
k,r(1−σ)

Φ
(
x, |∇u|

)
dx 6

c

σq

∫
A±
k,r

Φ

(
x,

(u− k)±
r

)
dx,

here (u− k)± := max{±(u− k), 0}, A±k,r := Br(x0) ∩ {(u− k)± > 0}.

We suppose that Φ(x, v) : Ω × R+ → R+ is a non-negative function satisfying the follow-
ing properties: for any x ∈ Ω the function v → Φ(x, v) is increasing and lim

v→0
Φ(x, v) = 0,

lim
v→+∞

Φ(x, v) = +∞. We also assume that

(Φ) There exist 1 < p < q such that for x ∈ Ω and for w > v > 0 there holds(w
v

)p
6
Φ(x,w)

Φ(x, v)
6
(w
v

)q
.

(Φλ) There exist s > 0, R > 0 and continuous, non-decreasing function λ(r) ∈ (0, 1) on the
interval (0, R), lim

r→0
λ(r) = 0, lim

r→0

r

λ(r)
= 0, such that for any Br(x0) ⊂ BR(x0) ⊂ Ω and

some A > 0 there holds

Φ+
Br(x0)

(
λ(r)v

r1+n
s

)
6 A Φ−Br(x0)

(
λ(r)v

r1+n
s

)
, r1+n

s 6 λ(r)v 6 1,

here Φ+
Br(x0)(v) := sup

x∈Br(x0)

Φ(x, v), Φ−Br(x0)(v) := inf
x∈Br(x0)

Φ(x, v), v > 0.

For the function λ(r) we also need the following condition

(λ) For any 0 < r < ρ < R there holds

λ(r) > λ(ρ)

(
r

ρ

)b
,

with some b > 0.
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For the function λ(r) =

[
log

1

r

]− β
q−p

, β > 0 this condition holds evidently, provided that R is

small enough.

Remark 1. Consider the function Φ(x, v) := vp + a(x)vq, a(x) > 0, oscBr(x0)a(x) 6

Kra
[

log 1
r

]β, a ∈ (0, 1], β > 0, K > 0. Evidently condition (Φλ) holds with
n(q − p)
a+ p− q

6 s 6∞,

a > q − p, λ(r) :=
[

log 1
r

]− β
q−p and A = Kq−p.

For the function Φ(x, v) := vp(x), oscBr(x0)p(x) 6
L

log 1
r

, L > 0 condition (Φλ) holds with

s > 0, λ(r) ≡ 1 and A = exp
(
L(1 + n

s
)
)
.

Our main result reads as follows.

Theorem 1. Let u ∈ DG−(Ω), u > 0, let conditions (Φ), (Φλ), (λ) be fulfilled. Let

B8ρ(x0) ⊂ BR(x0) ⊂ Ω, let additionally u ∈ Lsloc(Ω) with some s > q−p and

( ∫
B2ρ(x0)

us

) 1
s

6 d.

Then there exists a positive constant C depending only on the known parameters and d, such
that  1

|Bρ(x0)|

∫
Bρ(x0)

(u+ ρ)θdx


1
θ

6
C

λ(ρ)

(
inf

B ρ
2

(x0)
u+ ρ

)
,

where θ > 0 is some fixed number depending only on the known data.

The conditions of the Theorem are precise, we refer the reader to [2] for the examples. In
the case s =∞, the Theorem was proved in [3,4].
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