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The evolution of the new mathematical inequalities both continuous and discrete often places
a rigid support for the interrogative procedures and algorithms practice in applied sciences. It
is ordinary to ask whether it is plausible to have a scheme which incorporate both discrete and
continuous structures simultaneously. In order to combine discrete and continuous analysis,
Stefen Hilger successfully introduced the notion of time scale calculus [1, 2]. Since then hundreds
of research articles came out in this theory and its applications to several fields, see e.g., the
very striking treatises of Bohner and Peterson in [3, 4].

The theory of dynamic equations has been evolve very intensively in the last several decades,
see [4, 5]. These equations have a very special transition property to differential and difference
equations respective to the time scales of real and integer numbers. The theory of the boundary
value problem for dynamic equations is quite interesting field in recent era of mathematics. In
this regard, few manual are dedicated see [6, 7, 8]. However the study of terminal value problem
(TVP) for dynamic equations is varsatile and emerging area in the theory of dynamic non-linear
equation. In [9], "Hilsher and C.C Tisdell" discuss TVP of order first and second. This assertion
contain the qualitative analysis of certain differential equations which are partial in nature and
this analysis includes uniqueness and boundedness of their solution.

In this article we develop new dynamic integral inequalities on an arbitrary time scale. These
inequalities gives us the bound on the unknown functions which is right dense continuous on
any arbitrary time scale. The integral inequalities in their more general forms have unknown
functions inside the integral as well so claiming about the maximum value about these unknown
functions is not straight forward. Our results provides a promising solution for this caveat in
such a way that our bounds provide a explicit bounds for these unknowns. Although these
bounds are not for any arbitrary functions, but they are applicable to a much larger class of
functions i.e right dense continuous functions. A glimpse of one of these results is:

Theorem 1. Let E(ῐ, s̆), E1(ῐ, s̆), E2(ῐ, s̆), E3(ῐ, s̆) belongs to Crd(Λ
2,R+) which are defined

for all ῐ, s̆ ∈ T0.
(a1) If

E(ῐ, s̆) ≤ E1(ῐ, s̆) + E2(ῐ, s̆)

∫ ῐ

ῐ0

∫ ∞

s̆

E3(s, t)E(s, t)∆t∆s (1)

for ῐ, s̆ ∈ T0, then

E(ῐ, s̆) ≤ E1(ῐ, s̆) + E2(ῐ, s̆)A(ῐ, s̆)eκ1(ῐ, ῐ0) (2)

where

A(ῐ, s̆) =

∫ ῐ

ῐ0

∫ ∞

s̆

E3(s, t)E1(s, t)∆t∆s (3)

and κ1 =
∫∞
s̆
E3(ῐ, t)E2(ῐ, t)∆t.

(a2) If

E(ῐ, s̆) ≤ E1(ῐ, s̆) + E2(ῐ, s̆)

∫ ∞

ῐ

∫ ∞

s̆

E3(s, t)E(s, t)∆t∆s (4)
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for ῐ, s̆ ∈ T0, then
E(ῐ, s̆) ≤ E1(ῐ, s̆) + E2(ῐ, s̆)Ā(ῐ, s̆))eκ1(∞,ῐ) (5)

where
Ā(ῐ, s̆) =

∫ ∞

ῐ

∫ ∞

s̆

E3(s, t)E1(s, t)∆t∆s (6)

and κ1 =
∫∞
s̆
E3(ῐ, t)E2(ῐ, t)∆t.

Theses types of inequalities present in the literature for the case of real and integers domain.
Our results are more general in the sense that they are applicable to every closed subset of real
numbers and if we take our time scale (i.e the closed subset of real numbers) as integers and
real numbers our results transformed into special cases already present in the literature [10]
and validate these results.

The work is not merely the work of given bounds to inequalities and generalize them to
any subset of real numbers but we also provide how we use these bounds to solve particular
type differential and difference equations (more generally dynamic equations). The results are
applicable for the qualitative analysis such as uniqueness and boundness of the solution of
terminal value problems for certain partial dynamic equation given below:

E∆1∆2(ῐ, s̆) = h(ῐ, s̆, Eσ(ῐ, s̆)) + r(ῐ, s̆)

E(ῐ,∞) = σ∞(ῐ), E(∞, s̆) = τ∞(s̆), E(∞,∞) = d
(7)

where the functions h : Λ2×R→ R, r : Λ2 → R, σ∞, τ∞ : T0 → R are all right dense continuous
functions and d is a real constant.
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