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In this paper we study an abstract second order differential equation of elliptic type with
variable operator coefficients and general Robin boundary conditions, in the framework of UMD
spaces. These problems presents for example the linearized stationary case of a model describing
information diffusion in online social networks. Existence and regularity results are obtained
when the Labbas-Terreni assumption is fulfilled using semi-groups theory and interpolation
spaces.

This paper is devoted to study the following general problem
u′′ (x) + A (x)u (x)− ωu (x) = f(x), x ∈ (0, 1)
u′ (0)−Hu (0) = d0
u (1) = u1,

(1)

with f ∈ Lp (0, 1;E), 1 < p < +∞, where E is a complex Banach space, d0, u1 are given
elements in E and (A (x))x∈[0,1] is a family of closed linear operators whose domains D (A (x))
are dense in E. H is a closed linear operator in E, ω is a positive real number. The results
proved here in the Lp case complete our recent paper concerning the hölderian case, see [2].

For all x ∈ [0, 1], set Aω (x) = A (x)− ωI.
We will seek for a classical solution u to (1), i.e. a function u such that

a.e x ∈ (0, 1), u (x) ∈ D (A (x)) and
x 7→ A (x)u (x) ∈ Lp (0, 1;E)
u ∈ W 2,p (0, 1;E)
u (0) ∈ D (H) ,

(2)

The method is essentially based on Dunford calculus, interpolation spaces, the semigroup
theory and some techniques as in [2, 3].

We will assume that
E is a UMD space (3)

and suppose that

∃ ω0 > 0, ∃C > 0 : ∀x ∈ [0, 1] , ∀z ≥ 0, (Aω0 (x)− zI)
−1 ∈ L (E)

and ∥∥(Aω0 (x)− zI)
−1∥∥

L(E)
≤ C

1 + z
; (4)

and setting Qω (x) = − (−Aω(x))1/2 (see [1]), we suppose also that: ∃ C, α, µ > 0 : ∀x,
τ ∈ [0, 1], ∀ ω ≥ ω0 :

∥∥Qω (x) (Qω (x)− zI)−1
(
Qω (x)

−1 −Qω (τ)
−1)∥∥

L(E)
≤ C |x− τ |α

|z + ω|µ
with α + µ− 2 > 0;

(5)

this hypothesis is well known as Labbas-Terreni assumption.
We obtain the following theorem.
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Theorem 1. Assume (3)–(5). Let f ∈ Lp(0, 1;E), 1 < p < +∞ and

(Qω (0)−H)−1 d0 ∈ (D(A(0)), E) 1
2p
,p , u1 ∈ (D(A(1)), E) 1

2p
,p .

Then there exists ω∗ > 0 such that for all ω ≥ ω∗, the problem (1) has a unique solution
w (·) = Qω (·)2 u (·) verifying

1. Qω (·)2 u (·) ∈ Lp (0, 1;E).

2. u′′ ∈ W 2,p (0, 1;E).
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