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For a general discrete dynamics on a Banach and Hilbert spaces we give a necessary and
sufficient conditions of the existence of bounded solutions under assumption that the homoge-
neous difference equation admits an discrete dichotomy on the semi-axes. We consider the so
called resonance (critical) case when the uniqueness of solution is disturbed. We show that ad-
missibility can be reformulated in the terms of generalized or pseudoinvertibility. As a corollary
of the main result we obtain the conditions of weak homoclinic chaos.

Consider the following weakly nonlinear boundary-value problem

xn+1(ε) = Anxn(ε) + εZ(xn(ε), n, ε) + hn, (1)

lx·(ε) = α (2)

in the Hilbert space H,H1 where An : H → H - is a set of bounded operators, from the Hilbert
space H into itself. Assume that

A = (An)n∈Z ∈ l∞(Z,L(H)), h = (hn) ∈ l∞(Z,H).

l : l∞(Z,H)→ H1 is a linear and bounded operator which translates bounded solutions of (1)
into the Hilbert space H1, α is an element of the Hilbert space H1. The nonlinear vector-valued
function Z(x(n, ε), n, ε) satisfies the following conditions

Z(·, n, ε) ∈ C[||x− x0|| ≤ q], Z(x(n, ε), ·, ε) ∈ l∞(Z,H), Z(x(n, ε), n, ·) ∈ C[0, ε0]

in the neighborhood of solution x0n(c) of the generating (ε = 0) linear problem (q is a small
enough constant)

xn+1 = Anxn + hn, (3)

lx· = α, (4)

We are looking for necessary and sufficient conditions for the existence of strong generalized
solutions xn(ε) : Z→ H of (1), (2) bounded on the entire integer axis

x·(ε) ∈ l∞(Z,H), xn(·) ∈ C[0, ε0],

which turn into one of the strong generalized solutions x0n(c) of the generating boundary-value
problem (1), (2) for ε = 0: xn(0) = x0n(c).

Theorem 1. Suppose that the homogeneous equation admits an exponential dichotomy on
the semi-axes Z+,Z− with projectors P and Q respectively (D = P − I +Q)) and the following
condition

+∞∑
k=−∞

H(k + 1)hk = 0 (H(n+ 1) = PHD
QU−1(n+ 1), PHD

= I −DD+)

is satisfied (U(n) is an evolution operator of the homogeneous equation).
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Under condition

PVH1
(α− l(G[h])(·)) = 0, (V = lU(·))PPN(D) : H → H1)

boundary-value problem (3), (4) has a set of strong generalized solutions in the form

x0n(c) = U(n)PPN(D)PN(V )c+G[h, α](n), c ∈ H

where
G[h, α](n) = (G[h](n)) + V

+
(α− l(G[h])(·))

is the extension of the generalized Green’s operator.

Theorem 2 (necessary condition). Suppose that the homogeneous equation admits a di-
chotomy on the semi-axes Z+ and Z− with projectors P and Q respectively. Let the boundary-
value problem (1), (2) has a strong generalized solution xn(ε) bounded on Z, which turns into
one of the generating solutions x0n(c) of the boundary-value problem (3), (4) with element
c = c∗ ∈ H. Then the element c∗ satisfies the equation

F (c∗) =

{ ∑+∞
k=−∞H(k + 1)Z(U(k)PPN(D)PN(V )c

∗ + (G[h, α])(k), k, 0) = 0,

PVH1
lZ(U(·)PPN(D)PN(V )c

∗ + (G[h, α])(·), ·, 0) = 0.
, (5)

Theorem 3 (sufficient condition). Suppose that the homogeneous equation admits a di-
chotomy on the semi-axes Z+,Z− with projectors P and Q respectively and the considered
linear boundary-value problem (3), (4) has strong generalized bounded solutions x0n(c). Assume
that

PHB0

[
PHD

Q

PVH1

]
= 0. (6)

Then for each element c = c∗ satisfying the equation for generating elements (5) there are
strong generalized solutions xn(ε) of the nonlinear boundary-value problem (1), (2) bounded on
the entire Z axis, turn for ε = 0 into the generating solutions x0n(c∗) : xn(0) = x0n(c

∗). These
solutions can be found using a convergent iterative process for ε ∈ [0, ε∗] ⊂ [0, ε0]

yl+1
n = U(n)PPN(D)PN(V )c

l+1(ε) + yl+1
n (ε),

cl+1(ε) = −B+

0

[∑+∞
k=−∞H(k + 1)

(
A1(k)y

l+1
k (ε) +R(ylk(ε), k, ε)

)
PVH1

l

(
A1(·)yl+1

· (ε) +R(yl(ε), ·, ε)
) ]

+ PN(B0)cρ(ε),

yn(ε) = εG[Z(y·(ε) + x0· (c
∗)), 0](n),

xln(ε) = yln(ε) + x0n(c
∗), y0n(ε) = 0, l = 0,∞.
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