O. O. Pokutnyi ${ }^{1}$

${ }^{1}$ Institute of mathematics of NAS of Ukraine, Kiev, Ukraine lenasas@gmail.com, alex_poker@imath.kiev.ua

For a general discrete dynamics on a Banach and Hilbert spaces we give a necessary and sufficient conditions of the existence of bounded solutions under assumption that the homogeneous difference equation admits an discrete dichotomy on the semi-axes. We consider the so called resonance (critical) case when the uniqueness of solution is disturbed. We show that admissibility can be reformulated in the terms of generalized or pseudoinvertibility. As a corollary of the main result we obtain the conditions of weak homoclinic chaos.

Consider the following weakly nonlinear boundary-value problem

$$
\begin{gather*}
x_{n+1}(\varepsilon)=A_{n} x_{n}(\varepsilon)+\varepsilon Z\left(x_{n}(\varepsilon), n, \varepsilon\right)+h_{n}, \tag{1}\\
l x \cdot(\varepsilon)=\alpha \tag{2}
\end{gather*}
$$

in the Hilbert space $\mathcal{H}, \mathcal{H}_{1}$ where $A_{n}: \mathcal{H} \rightarrow \mathcal{H}$ - is a set of bounded operators, from the Hilbert space \mathcal{H} into itself. Assume that

$$
A=\left(A_{n}\right)_{n \in \mathbb{Z}} \in l_{\infty}(\mathbb{Z}, \mathcal{L}(\mathcal{H})), \quad h=\left(h_{n}\right) \in l_{\infty}(\mathbb{Z}, \mathcal{H}) .
$$

$l: l_{\infty}(\mathbb{Z}, \mathcal{H}) \rightarrow \mathcal{H}_{1}$ is a linear and bounded operator which translates bounded solutions of (1) into the Hilbert space \mathcal{H}_{1}, α is an element of the Hilbert space \mathcal{H}_{1}. The nonlinear vector-valued function $Z(x(n, \varepsilon), n, \varepsilon)$ satisfies the following conditions

$$
Z(\cdot, n, \varepsilon) \in C\left[\left\|x-x^{0}\right\| \leq q\right], Z(x(n, \varepsilon), \cdot, \varepsilon) \in l_{\infty}(\mathbb{Z}, \mathcal{H}), Z(x(n, \varepsilon), n, \cdot) \in C\left[0, \varepsilon_{0}\right]
$$

in the neighborhood of solution $x_{n}^{0}(c)$ of the generating $(\varepsilon=0)$ linear problem (q is a small enough constant)

$$
\begin{gather*}
x_{n+1}=A_{n} x_{n}+h_{n}, \tag{3}\\
l x .=\alpha, \tag{4}
\end{gather*}
$$

We are looking for necessary and sufficient conditions for the existence of strong generalized solutions $x_{n}(\varepsilon): \mathbb{Z} \rightarrow \mathcal{H}$ of (1), (2) bounded on the entire integer axis

$$
x .(\varepsilon) \in l_{\infty}(\mathbb{Z}, \mathcal{H}), \quad x_{n}(\cdot) \in C\left[0, \varepsilon_{0}\right],
$$

which turn into one of the strong generalized solutions $x_{n}^{0}(c)$ of the generating boundary-value problem (1), (2) for $\varepsilon=0: x_{n}(0)=x_{n}^{0}(c)$.

Theorem 1. Suppose that the homogeneous equation admits an exponential dichotomy on the semi-axes $\mathbb{Z}_{+}, \mathbb{Z}_{-}$with projectors P and Q respectively $(D=P-I+Q)$) and the following condition

$$
\sum_{k=-\infty}^{+\infty} \bar{H}(k+1) h_{k}=0 \quad\left(\bar{H}(n+1)=P_{\overline{\mathcal{H}}_{\bar{D}}} Q U^{-1}(n+1), \quad P_{\overline{\mathcal{H}}_{\bar{D}}}=I-\bar{D} D^{+}\right)
$$

is satisfied $(U(n)$ is an evolution operator of the homogeneous equation).
http://www.imath.kiev.ua/~young/youngconf2023

Under condition

$$
\left.P_{\bar{V}_{\mathcal{H}_{1}}}(\alpha-l(G[h])(\cdot))=0, \quad(V=l U(\cdot)) P P_{N(D)}: \mathcal{H} \rightarrow \mathcal{H}_{1}\right)
$$

boundary-value problem (3), (4) has a set of strong generalized solutions in the form

$$
x_{n}^{0}(\bar{c})=U(n) P P_{N(D)} P_{N(V)} \bar{c}+\overline{G[h, \alpha]}(n), \quad \bar{c} \in \mathcal{H}
$$

where

$$
\overline{G[h, \alpha]}(n)=(G[h](n))+\bar{V}^{+}(\alpha-l(G[h])(\cdot))
$$

is the extension of the generalized Green's operator.
Theorem 2 (necessary condition). Suppose that the homogeneous equation admits a dichotomy on the semi-axes \mathbb{Z}_{+}and \mathbb{Z}_{-}with projectors P and Q respectively. Let the boundaryvalue problem (1), (2) has a strong generalized solution $x_{n}(\varepsilon)$ bounded on \mathbb{Z}, which turns into one of the generating solutions $x_{n}^{0}(c)$ of the boundary-value problem (3), (4) with element $c=c^{*} \in \overline{\mathcal{H}}$. Then the element c^{*} satisfies the equation

$$
F\left(c^{*}\right)=\left\{\begin{array}{c}
\sum_{k=-\infty}^{+\infty} \bar{H}(k+1) Z\left(U(k) P P_{N(D)} P_{N(V)} c^{*}+\overline{(G[h, \alpha])}(k), k, 0\right)=0 \tag{5}\\
P_{\bar{V}_{\mathcal{H}_{1}}} l Z\left(U(\cdot) P P_{N(D)} P_{N(V)} c^{*}+\overline{(G[h, \alpha])}(\cdot), \cdot, 0\right)=0
\end{array}\right.
$$

Theorem 3 (sufficient condition). Suppose that the homogeneous equation admits a dichotomy on the semi-axes $\mathbb{Z}_{+}, \mathbb{Z}_{-}$with projectors P and Q respectively and the considered linear boundary-value problem (3), (4) has strong generalized bounded solutions $x_{n}^{0}(c)$. Assume that

$$
P_{\overline{\mathcal{H}}_{\bar{B}_{0}}}\left[\begin{array}{c}
P_{\overline{\mathcal{H}}_{\bar{D}}} Q \tag{6}\\
P_{\bar{V}_{\mathcal{H}_{1}}}
\end{array}\right]=0 .
$$

Then for each element $c=c^{*}$ satisfying the equation for generating elements (5) there are strong generalized solutions $x_{n}(\varepsilon)$ of the nonlinear boundary-value problem (1), (2) bounded on the entire \mathbb{Z} axis, turn for $\varepsilon=0$ into the generating solutions $x_{n}^{0}\left(c^{*}\right): x_{n}(0)=x_{n}^{0}\left(c^{*}\right)$. These solutions can be found using a convergent iterative process for $\varepsilon \in\left[0, \varepsilon_{*}\right] \subset\left[0, \varepsilon_{0}\right]$

$$
\begin{gathered}
y_{n}^{l+1}=U(n) P P_{N(D)} P_{N(V)} \bar{c}^{l+1}(\varepsilon)+\bar{y}_{n}^{l+1}(\varepsilon), \\
\bar{c}^{l+1}(\varepsilon)=-\bar{B}_{0}^{+}\left[\begin{array}{c}
\sum_{k=-\infty}^{+\infty} \bar{H}(k+1)\left(A_{1}(k) \bar{y}_{k}^{l+1}(\varepsilon)+\mathcal{R}\left(y_{k}^{l}(\varepsilon), k, \varepsilon\right)\right) \\
P_{\bar{V}_{\mathcal{H}_{1}} l}\left(A_{1}(\cdot) \bar{y}^{l+1}(\varepsilon)+\mathcal{R}\left(y^{l}(\varepsilon), \cdot, \varepsilon\right)\right)
\end{array}\right]+\mathcal{P}_{N\left(B_{0}\right)} c_{\rho}(\varepsilon), \\
\bar{y}_{n}(\varepsilon)=\varepsilon \overline{G\left[Z\left(y \cdot(\varepsilon)+x^{0}\left(c^{*}\right)\right), 0\right]}(n), \\
x_{n}^{l}(\varepsilon)=y_{n}^{l}(\varepsilon)+x_{n}^{0}\left(c^{*}\right), \quad y_{n}^{0}(\varepsilon)=0, \quad l=\overline{0, \infty} .
\end{gathered}
$$

Acknowledgements. The work is supported by the grant of the National Research Fund of Ukraine (project 2020.02.0089)

1. Pokutnyi O.O. Dichotomy and bounded solutions of evolution equations in the Banach and Hilbert spaces. Preprint, 2023, 25 p.
2. Boichuk A.A. and Samoilenko A.M. Generalized inverse operators and Fredholm boundary-value problems. - Berlin: De Gruter, 2nd edition, 2016, 298 p.
3. Kaloshin V., Zhang K. Arnold diffusion for smooth systems of two and half degrees of freedom. New Jersey: Princeton University, 2020, doi: 10.2307/j.ctvzgb6zj.
