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We present the uniqueness of the solution of a nonlinear evolution dam problem in the
case of an incompressible fluid and Ω is a heterogeneous meduim bounded in R3. Let Ω be a
bounded heterogeneous medium of R3 with a horizontal background and y = (y1, y2, y3), we
set y = (y′, y3) where y′ = (y1, y2). Let A, B, D and F be real numbers such that B > A and
F > E. The impermeable part is Γ1 = [A,B] × [E,F ] and Γ2 is the permeable part. We also
give the following definitions

Σ1 = Γ1 × (0, T ), Σ2 = Γ2 × (0, T ), Σ3 = Σ2 ∩ {ϕ > 0}, Σ4 = Σ2 ∩ {ϕ = 0},

where ϕ is a definite positive Lipschitz function on Q̄ of class C0,1 in y and from C1 at t which
represents the pressure assigned to Γ2. The matrix permeability of the porous medium is given
by

M(y) =

 0 0 0
0 0 0

0 0 k(y′)

 ,

where k : (A,B)× (E,F ) −→ R2 is a function of the variable y′. Then the fluid velocity is

v = (k(y′))p−1|uy3|p−2uy3 .

If we set h(y′) = (k(y′))p−1 and b(y, uy3) =|uy3|p−2uy2 , we can rewrite v as follows

v = h(y′)b(y, uy3).

Consider the following weak formulation of the nonlinear evolution dam problem associated
with initial data g0

(P )



Find (u, g) ∈ Lp(0, T,W 1,p(Ω))× L∞(Q) such that :

u ≥ y3, 0 ≤ g ≤ 1, g(u− y3) = 0 a.e. in Q,
u = φ on Σ2,∫
Q

[
h(y′)(a(y, uy3)− ga(y, 1))ξy2 + gξt

]
dydt+

∫
Ω

g0(y)ξ(y, 0)dy ≤ 0,

∀ ξ ∈ W 1,q(Q), ξ = 0 on Σ3, ξ ≥ 0 on Σ4,

ξ(x, T ) = 0 for a.e. y ∈ Ω.

where h : (A,B)× (E,F ) −→ R2 is a Lipschitz continuous function of the variable y′ such that
for two positive constants m1 and m2

m1 6 h(y′) 6 m2, ∀ y′ ∈ (A,B)× (E,F ), (1)

a : Ω× R3 −→ R is a continuous function satisfying for some positive constants α, β,

∀ r ∈ R : α |r|p 6 a(y, r)r, (2)
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∀ r ∈ R3 : |a(y, r)| 6 β |r|p−1 , (3)

∀ r1, r2 ∈ (R3)2, r1 6= r2 : (a(y, r1)− a(y, r2))(r1 − r2) > 0, (4)

and g0 : Ω −→ R is a measurable function that satisfies

0 6 g0 6 1 a.e. in Ω. (5)

We use Thychonoff’s fixed point theorem and a methode similar in [1] to prove the existence
of the solution to our problem. In [2, 3] using the method of doubling variables, the authors
prove the uniqueness of solution of a evolution dam problem, we use a methode similar to prove
the following theorem

Theorem 1. Assume that (1)− (5) and (0, h(y′)a(y, 1))ν ≤ 0 on Γ1 hold, where ν denotes
the outward unit normal to the boundary ∂Ω. Then, the solution of the problem (P) associated
with the initial data g0 is unique.
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