A TYPE OF THE EVOLUTION FREE BOUNDARY PROBLEMS IN A BOUNDED DOMAIN OF \mathbb{R}^3 : STUDY THE UNIQUENESS OF THE SOLUTION

Messaouda Ben Attia

Applied Mathematics Laboratory, University of Kas
di Merbah Ouargla, Algeria. benattiamessaouda1402@gmail.com

We present the uniqueness of the solution of a nonlinear evolution dam problem in the case of an incompressible fluid and Ω is a heterogeneous meduim bounded in \mathbb{R}^3 . Let Ω be a bounded heterogeneous medium of \mathbb{R}^3 with a horizontal background and $y = (y_1, y_2, y_3)$, we set $y = (y', y_3)$ where $y' = (y_1, y_2)$. Let A, B, D and F be real numbers such that B > A and F > E. The impermeable part is $\Gamma_1 = [A, B] \times [E, F]$ and Γ_2 is the permeable part. We also give the following definitions

$$\Sigma_1 = \Gamma_1 \times (0, T), \quad \Sigma_2 = \Gamma_2 \times (0, T), \quad \Sigma_3 = \Sigma_2 \cap \{\varphi > 0\}, \quad \Sigma_4 = \Sigma_2 \cap \{\varphi = 0\},$$

where φ is a definite positive Lipschitz function on \overline{Q} of class $C^{0,1}$ in y and from C^1 at t which represents the pressure assigned to Γ_2 . The matrix permeability of the porous medium is given by

$$M(y) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & k(y') \end{pmatrix},$$

where $k: (A, B) \times (E, F) \longrightarrow \mathbb{R}^2$ is a function of the variable y'. Then the fluid velocity is

 $v = (k(y'))^{p-1} |u_{y_3}|^{p-2} u_{y_3}.$

If we set $h(y') = (k(y'))^{p-1}$ and $b(y, u_{y_3}) = |u_{y_3}|^{p-2}u_{y_2}$, we can rewrite v as follows

$$v = h(y')b(y, u_{y_3}).$$

Consider the following weak formulation of the nonlinear evolution dam problem associated with initial data g_0

$$(P) \qquad \begin{cases} \text{Find } (u,g) \in L^{p}(0,T,W^{1,p}(\Omega)) \times L^{\infty}(Q) \text{ such that }: \\ u \geq y_{3}, \quad 0 \leq g \leq 1, \quad g(u-y_{3}) = 0 \text{ a.e. in } Q, \\ u = \phi \text{ on } \Sigma_{2}, \\ \int_{Q} \left[h(y')(a(y,u_{y_{3}}) - ga(y,1))\xi_{y_{2}} + g\xi_{t} \right] dydt + \int_{\Omega} g_{0}(y)\xi(y,0)dy \leq 0, \\ \forall \ \xi \in W^{1,q}(Q), \quad \xi = 0 \text{ on } \Sigma_{3}, \quad \xi \geq 0 \text{ on } \Sigma_{4}, \\ \xi(x,T) = 0 \text{ for a.e. } y \in \Omega. \end{cases}$$

where $h: (A, B) \times (E, F) \longrightarrow \mathbb{R}^2$ is a Lipschitz continuous function of the variable y' such that for two positive constants m_1 and m_2

$$m_1 \leqslant h(y') \leqslant m_2, \quad \forall \ y' \in (A, B) \times (E, F),$$
(1)

 $a: \Omega \times \mathbb{R}^3 \longrightarrow \mathbb{R}$ is a continuous function satisfying for some positive constants α, β ,

$$\forall r \in \mathbb{R} : \quad \alpha \left| r \right|^p \leqslant a(y, r)r, \tag{2}$$

http://www.imath.kiev.ua/~young/youngconf2023

$$\forall r \in \mathbb{R}^3 : |a(y,r)| \leq \beta |r|^{p-1}, \qquad (3)$$

$$\forall r_1, r_2 \in (\mathbb{R}^3)^2, r_1 \neq r_2: \quad (a(y, r_1) - a(y, r_2))(r_1 - r_2) > 0, \tag{4}$$

and $g_0: \Omega \longrightarrow \mathbb{R}$ is a measurable function that satisfies

$$0 \leqslant g_0 \leqslant 1$$
 a.e. in Ω . (5)

We use Thychonoff's fixed point theorem and a methode similar in [1] to prove the existence of the solution to our problem. In [2,3] using the method of doubling variables, the authors prove the uniqueness of solution of a evolution dam problem, we use a methode similar to prove the following theorem

Theorem 1. Assume that (1) - (5) and $(0, h(y')a(y, 1))\nu \leq 0$ on Γ_1 hold, where ν denotes the outward unit normal to the boundary $\partial\Omega$. Then, the solution of the problem (P) associated with the initial data g_0 is unique.

- 1. B. Attia M., Zaouche A., Bousselsal M., Uniqueness of solution of a evolution dam problem in a heterogenous porous medium, Opuscula Math., 2022, 1, 5–29.
- Lyaghfouri A., The evolution dam problem for nonlinear Darcy's law and Dirichlet boundary conditions. Port. Math., 1999, 56, No. 1, 1–38.
- 3. Zaouche E., Uniqueness of solution of a heterogeneous evolution dam problem associated with a compressible fluid flow through a rectangular porous medium. Glas. Mat. Ser. III, 2022, 55, 93–99.