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In this work, we will investigate the growth and oscillation, near the singular point z = 0,
of solutions to the differential equation
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where A (z) , A0 (z) , B (z) , B0 (z) , H (z) are analytic functions in

D (0, R) = {z ∈ C : 0 < |z| < R}

and a, b are non-zero complex constants.
The idea to study the growth of solutions of the linear differential equations near a

finite singular point by using the Nevanlinna theory has began by the paper [2]; then after
some publications have followed, see [1,3]; (for the fundamental results, the definitions and
the standard notations of the Nevanlinna theory see [5]). The principal tools used in these
investigations is the estimates of the logarithmic derivative
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. A question was asked in [2,3] about if we can get similar

estimates near z0 of
∣∣∣f (k)(z)
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∣∣∣ where f is a meromorphic function in a region of the form
Dz0 (0, R) = {z ∈ C : 0 < |z − z0| < R} . This question was answered in [4]. In this talk, we
will give some applications of these estimates on the growth and oscillation of solutions of
certain class of linear differential equations with analytic coefficients in a punctured disc. In
fact, we will prove the following results.

Theorem 1. Let A (z) 6≡ 0, B (z) 6≡ 0, F (z) be analytic functions in D (0, R) such that
max {σ (A, 0) , σ (B, 0) , σ (F, 0)} < n, n ∈ N \ {0} ; let a, b be complex constants such that
ab 6= 0 and a 6= b. Then, every solution f (z) 6≡ 0 of the differential equation
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satisfies σ (f, 0) =∞. Further, if F (z) 6≡ 0, we have

λ̄(f, 0) = λ(f, 0) = σ(f, 0) = +∞, λ̄2(f, 0) = λ2(f, 0) = σ2(f, 0) ≤ n.

Theorem 2. Let A (z) 6≡ 0, A0 (z) , B (z) 6≡ 0, B0 (z) , F (z) be analytic functions in D (0, R)
such that

max {σ (A0, 0) , σ (B0, 0) , σ (A, 0) , σ (B, 0) , σ (F, 0)} < n, n ∈ N \ {0} ;

let a, b be complex constants such that ab 6= 0 and a = cb, c < 0. Then, every solution f (z) 6≡ 0
of the differential equation
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satisfies σ (f, 0) =∞. Further, if F (z) 6≡ 0, we have

λ̄(f, 0) = λ(f, 0) = σ(f, 0) = +∞, λ̄2(f, 0) = λ2(f, 0) = σ2(f, 0) ≤ n.
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