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In this work, we present the well-posedness and the exponential stability result without the
usual assumption on the wave speeds of a Bresse-type system of thermoelasticity of type III by
using the semigroup method and the energy method.

In the present paper we are concerned at the Bresse system with a distributed delay term,
ρ1φtt − k(φx + lw + ψ)x − k0l(wx − lφ) + µ1φt +

∫ τ2
τ1
φt(x, t− s)ds = 0

ρ2ψtt − bψxx + k(φx + lw + ψ) + βθtx = 0
ρ1wtt − k0(wx − lφ)x + kl(φx + lw + ψ) = 0
ρ3θtt − δθxx + βφttx − kθttx = 0.

(1)

where (x, t) ∈ (0, 1)× R+ with the following boundary conditions:

φ(0, t) = φ(1, t) = ψx(0, t) = ψx(1, t) = wx(0, t) = wx(1, t) = θ(0, t) = θ(1, t) = 0, t > 0 (2)

and the initial conditions

φ(0, t) = φ0(x), φt(0, t) = φ1(x), ψ(0, t) = ψ0(x),
ψt(x, 0) = ψ1(x), w(x, 0) = w0(x), wt(0, 1) = w1(t),
θ(x, 0) = θ0(x), θt(x, 0) = θ1(x),
φt(x,−τ) = f(x, t), in 0 < t ≤ τ2
φ(0, t) = ψx(o, t) = wx(0, t) = θ0(0, t) = 0, t > 0
φx(1, t) = ψ(1, t) = w(1, t) = 0, t > 0.

(3)

τ1 and τ2 are two real numbers with 0 ≤ τ1 < τ2, µ1 > 0 is a positive constant,
µ2 : [τ1, τ2] −→ R is an L∞ function, µ2 > 0 almost everywhere, and the initial data
(φ0, φ1, ψ0, ψ1, w0, w1, θ0, θ1, f0). belong to a suitable space (see below) And under the assump-
tion

µ1 ≥
∫ τ2

τ1

µ2(s)ds (4)

The aim of this paper is to study the well-posedness and asymptotic stability of system(1)-(3).
Now we first prove the existence and uniqueness of regular solutions to problem (1)-(3) by using
a semigroup theory as in [3], and Introduce the following new variable [1-2]. In order to exhibit
the dissipative nature of (1), we differentiate the first, the second and the third equations of
system (1) with respect to t and introduce new dependent variables

Φ = φt, Ψ = ψt,w = wt and z(x, ρ, s, t) = Φt(x, t− ρs)

z(x, ρ, s, t) = Φt(x, t− ρs) in (0, 1)× (0, 1)× (τ1, τ2)× (0,∞). (5)
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Then, we have

szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0 in (0, 1)× (0, 1)× (τ1, τ2)× (0,∞).

Therefore, problem (1.2) takes the form
ρ1Φtt − k(Φx + lw + Ψ)x − k0l(wx − lΦ) + µ1Φt +

∫ τ2
τ1
µ2z(x, 1, t, s)ds = 0

szt(x, ρ, s, t) + zρ(x, ρ, s, t) = 0
ρ2Ψtt − bΨxx + k(Φx + lw + Ψ) + βθtx = 0
ρ1wtt − k0(wx − lΦ)x + kl(Φx + lw + Ψ) = 0
ρ3θtt − δθxx + βΨtx − kθttx = 0.

(6)

With the initial and boundary conditions:

Φ(0, t) = Φ(1, t) = Ψ(0, t) = Ψ(1, t) = w(0, t) = w(1, t) = 0, t > 0 (7)

Φ(0, t) = Φ0(x), Φt(0, t) = Φ1(x), Ψ(0, t) = Ψ0(x),
Ψt(x, 0) = Ψ1(x), w(x, 0) = w0(x), wt(0, 1) = w1(t), x ∈ (0, 1)
θ(x, 0) = θ0(x), θt(x, 0) = θ1(x),
z(x, 0, t, s) = Φt(x, t) on (0, 1)× (0,∞)× (τ1, τ2).
z(x, ρ, 0, s) = f0(x, ρ, s)Φt(x,−τ) = f(x, t), in 0 < t ≤ τ2
Φ(0, t) = Ψx(0, t) = wx(0, t) = θ0(0, t) = 0, t > 0
Φx(1, t) = Ψ(1, t) = w(1, t) = 0, t > 0.

(8)

The functional energy of solution of problem (6)-(8) is defined by

E(t) = 1
2

1∫
0

[ρ1Φ
2 + ρ2Ψ

2 + ρ1w2 + bΨ 2
x + ρ3θ

2
t + δθ2x + k(Φx + Ψ + lw)2 + k0(wx − lΦ)2]dx

+1
2

1∫
0

1∫
0

∫ τ2
τ1
sµ2(s)z

2(x, ρ, s, t)dsdρdx.

(9)

Theorem 1. Let (Φ, Ψ,w ⊂, θ, z) be the solution of (6)-(8) Then there two positive constants
α and γ such that E(t) ≤ E(0)e−γt, t > 0.

Lemma 1. Let(Φ, Ψ,w, θ, z) be the solution of (6)-(8) and assume (4) holds. Then the
energy functional, defined by (9) satisfies,

d

dt
E(t) ≤ −r0

∫ 1

0

Φ2
tdt− k

∫ 1

0

θ2txdx

with r0 = µ1 −
τ2∫
τ1

µ2(s)ds
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