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In this paper, the free transverse vibration of a non linear Euler Bernoulli beam under
a neutral type delay is considered. In order to suppress the beam transverse vibrations, a
boundary control based on the Lyapunov method is designed. The novelty of this work is the
ability to get a wide variety of energy decay rates under free vibration conditions.

Due to the requirement for high-precision control of numerous mechanical systems, such as
marine risers for oil and gas transportation, spacecraft with flexible attachments, or flexible
robot arms, the boundary control of flexible systems has been an important topic of study in
recent years. The time delay is one of several elements that have a significant impact on the
dynamic properties of systems. It became evident that its existence could not be fully neglected
in many systems, and with the rapid growth of numerous engineering disciplines, including
mechanical engineering, a more precise system analysis was necessary. We consider in this
work the neutrally retarded nonlinear Euler-Bernoulli beam for (x, t) ∈ (0, L)× [0,∞), L > 0
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under the boundary{
uxx(0, t) = uxx(L, t) = u(0, t) = 0, ∀ t ≥ 0,

EIuxxx(L, t) = P0ux(L, t) +
1
2
EAu3x(L, t) + αut(L, t), ∀ t ≥ 0, α > 0,

(2)

and initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L), (3)

where EI is the beam’s flexural rigidity, ρA is the beam’s mass per unit length, and u(x, t)
represents transverse displacement at time t with respect to the spatial coordinate x, EA the
axial stiffness, P0 the tension force. In this work we consider the transverse dynamics of a
beam in bending vibration and we neglect the coupling between longitudinal and transversal
displacements. Assuming that the change in length due to the axial force is small and negligible,
we take only the elongation of the beam due to the curvature. We prove a general decay result
for problem (1)–(3).
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