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In this paper, we are interested in the existence and regularity of a solution for some
anisotropic elliptic equations with Hardy potential and L™(£2) datum in appropriate anisotropic
Sobolev spaces. The aim of this work is to get natural conditions to show the existence and
regularity results for the solutions, that is related to a anisotropic Hardy inequality.

Let Q be a bounded open set in RY(N > 2) with smooth boundary 9§ and 7= (P1, s PN)
are restricted as follows
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The anisotropic Laplace operator Az u is defined by
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This paper deals with the study of existence and regularity of solutions for a class of nonlinear
anisotropic elliptic problems
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where f belongs to L™(2) with m > 1 and p > 0, such that
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Our main motive in this article is to investigate the results of [1] the framework of the
operator non-homogeneous A u. To reach this goal, we will face the following difficulties. First,
let us note that (2) can be singular at the origin on the right-hand side, the so-called Hardy
potential. On the other hand, there is difficulty in applying anisotropic Hardy inequality, which

plays a major role in showing the desired results. To overcome these difficulty we approximate
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solution sequence, by using the anisotropic Hardy inequality (see Theorem 1 and Corollary 1).
The problem (2) is related to the following Anisotropic Hardy type inequality (see [2]).

Theorem 1 ([]2|). Let v € CiB), 1 < p, < N, i = 1,N, B =
{z € RY; such that x; # 0, ¥ i =1, N}. Then we have
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Corollary 1. Let v € C}(2),1 < p; < N,i=1,N, then we have
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F(Fh)e first result deals with a given f which yields unbounded solutions in energy space
Wo(9).

Theorem 2. Assume that (1), (3) hold true. Let f € L™ (), such that
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Then, there exists a weak solution u € L*(2) N Wol’(pi)(Q) to problem (2), where
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The next result deals with the case when the summability of f gives the existence of solution
u € Wol’(m), with 1 <n; < p; for every i = 1, N.

Theorem 3. Assume that (1), (3) hold true. Let f € L™(2), such that
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Then, there exists a weak solution u € L™ (Q) N Wol’(m)(Q) to problem (2), where
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