DECAY OF SOLUTIONS OF A COUPLED SYSTEM IN A STAR-SHAPED DOMAIN WITH LINEAR BOUNDARY AND INTERNAL FEEDBACKS

H. Kasri¹

¹University of science and technology houari boumediene, El Alia Babezzouar, Algiers, Algeria h.kasri@hotmail.com. hkasri@usthb.dz

We consider a parabolic/hyperbolic coupled system of two partial differential equations (PDEs), which features a suitable boundary and internal dissipation term. The system consists of the elasticity equation and the heat equation in a bounded domain Ω . We proved the exponential decay result with an estimation of the decay rates. Our result is established using the multiplier method [1].

let Ω be a bounded domain of \mathbb{R}^3 with a boundary $\Gamma = \partial \Omega$ of class C^3 such that $\Gamma = \Gamma_0 \cup \Gamma_1$. The model is given by:

$$\begin{cases} u'' - \mathbf{div}\sigma(u) + \xi \nabla \theta + a(x)u' = 0, & \text{in } Q = \Omega \times]0, \infty[,\\ \theta' - \Delta \theta + \beta \mathbf{div}u' = 0, & \text{in } Q,\\ \theta = 0, & \text{in } Q, \end{cases}$$
(1)

Our notations in (1) are standard: $u' = \frac{\partial u}{\partial t}$, $u'' = \frac{\partial^2 u}{\partial t^2}$, $u(x,t) \in \mathbb{R}^3$ denote the displacement vector at $x = (x_1, x_2, x_3) \in \Omega$ and t is the time variable and $\theta = \theta(x, t)$ represent the temperature. $\sigma(u) = (\sigma_{ij}(u))_{i,j=1}^3$ is the stress tensor given by $\sigma(u) = 2\alpha\varepsilon(u) + \lambda \operatorname{div}(u)I_3$, where λ and α are the Lamé coefficients, I_3 is the identity matrix of \mathbb{R}^3 and $\varepsilon(u) = \frac{1}{2}(\nabla u + (\nabla u)^T) = [\varepsilon_{ij}(u)]_{i,j=1}^3$ is a 3×3 symmetric matrix. From now on, a summation convention with respect to repeated indexes will be use. Also, in system (1) $a(x) \in L^\infty$ is a nonnegative coefficient of the damping term such that $a(x) \ge a_0 \ge 0$, the coupling parameters ξ and β are supposed to be positive and ρ , η are positive constants.

We complement system (1) with initial conditions

$$u(.,0) = u_0, \ u'(.,0) = u_1, \ \theta(.,0) = \theta_0, \ \text{in } \Omega,$$
 (2)

and Wentzell boundary conditions (see [3])

$$\begin{cases} u_T'' + \sigma_S(u) - c^2 \overline{\operatorname{\mathbf{div}}_T \sigma_T^0(u)} + l(x)u_T + bu_T' = 0, & \text{on } \Sigma, \\ u_\nu'' + \sigma_\nu(u) + \sigma_T^0(u) : \partial_m \nu + l(x)u_\nu + bu_\nu' = 0, & \text{on } \Sigma, \end{cases}$$
(3)

where a = a(x) and b = b(x) be two nonnegative functions belongs to $C^1(\Gamma)$, $\sigma_T^0(u) : \partial_m \nu = tr(\sigma_T^0(u) \cdot \partial_m \nu)$, with

$$\sigma_T^0(u) = 2\alpha \varepsilon_T^0(u) + \frac{2\lambda\alpha}{\lambda + 2\alpha} tr(\varepsilon_T^0(u))I_2,$$

and "tr" means the trace of a matrix. As usual $\nu = \nu(x)$ denotes the unit normal vector at $x \in \Gamma$ pointing the exterior of Ω .

We have the following existence and uniqueness result (see [2]):

Theorem 1. The problem (1 - 2 - 3) is well posed in the space \mathcal{H} . In particular: for all $(u_0, u_1, \theta_0, u_{1|\Gamma}) \in D(\mathcal{A})$, the problem (1) has a unique (strong) solution which satisfies $(u, u', \theta, u'_{|\Gamma}) \in W^{1,\infty}(\mathbb{R}_+, \mathcal{H}) \cap L^{\infty}(\mathbb{R}_+, D(\mathcal{A}))$. Moreover, for all $(u_0, u_1, \theta_0, u_{1|\Gamma}) \in \mathcal{H}$, the problem (1 - 2 - 3) has a unique (weak) solution satisfying $(u, u', \theta, u'_{|\Gamma}) \in \mathcal{C}(\mathbb{R}_+, \mathcal{H})$.

http://www.imath.kiev.ua/~young/youngconf2023

The main result of this work is the following theorem

Theorem 2. Let (u, θ) be the weak solution of the coupled system (1 - 2 - 3), then there exist two positive constants M and ω such that

$$\mathcal{E}(t) \le \mathcal{E}(0)e^{1-\omega t}.$$

We begin by proving the following Lemma.

Lemma 1. Suppose $q = (q_1, q_2, q_3)$ is a smooth vector field on Ω of class $W^{1,\infty}(\overline{\Omega})^3$. Then, for every strong solution (u, θ) of (1) we have the following identity:

$$\begin{split} 0 &= -\left[\int_{\Omega} \underbrace{2(q:\nabla u)}_{M(u)} \cdot u' dx\right]_{0}^{T} + \int_{Q_{T}} \operatorname{div}q\big(\sigma(u):\varepsilon(u) - |u'|^{2}\big) dx dt \\ &- 2\int_{Q_{T}} \sigma(u) \cdot (\nabla q \cdot \nabla u) \, dx dt - \xi \int_{Q_{T}} \nabla \theta \cdot M(u) \, dx dt - \int_{Q_{T}} l(x)u' \cdot M(u) \, dx dt \\ &+ \int_{\Sigma_{T}} \operatorname{div}_{T} q_{T}(\sigma_{T}^{0}(u):\varepsilon_{T}^{0}(u)) d\Gamma dt + \int_{\Sigma_{T}} q \cdot \nu \Big(|u'|^{2} + \alpha|\partial_{\nu}u_{T}|^{2} + (2\alpha + \lambda)|\partial_{\nu}u_{\nu}|^{2}\Big) d\Gamma dt \\ &- \int_{\Sigma_{T}} q \cdot \nu [2\alpha\varepsilon_{T}^{0}(u) + \lambda tr(\varepsilon_{T}^{0}(u)i_{2})]:\varepsilon_{T}^{0}(u) d\Gamma dt - \int_{\Sigma_{T}} q \cdot \nu (\alpha|\overline{\partial_{T}u_{\nu}} - (\partial_{T}\nu)u_{T}|^{2}) d\Gamma dt \\ &- 2\int_{\Sigma_{T}} \sigma_{T}^{0}(u): (\pi \partial_{T}u_{T}\pi + u_{\nu}\partial_{T}\nu)(\pi \partial_{T}q_{T}\pi) d\Gamma dt - 2\int_{\Sigma_{T}} \partial_{T}u_{\nu}(\sigma_{T}^{0}(u)(\partial_{T}\nu)q_{T}) d\Gamma dt \\ &+ 2\int_{\Sigma_{T}} (\sigma_{T}^{0}(u): \partial_{T}\nu)\overline{u_{T}}(\partial_{T}\nu)q_{T} d\Gamma dt - 2\int_{\Sigma_{T}} (\mathcal{R}: \sigma_{T}^{0}(u)): (u_{T} \otimes q_{T}) d\Gamma dt \\ &- 2\int_{\Sigma_{T}} (au_{T} + bu')(\pi \partial_{T}u_{T}\pi + u_{\nu}\partial_{T}\nu)q_{T} d\Gamma dt - 2\int_{\Sigma_{T}} (au_{\nu} + bu')(\partial_{T}u_{\nu} - \overline{u_{T}}\partial_{T}\nu)q_{T} d\Gamma dt, \end{split}$$

where $Q_T = [0, T] \times \Omega$, $\Sigma_T = [0, T] \times \Gamma$, \mathcal{R} is the curvature tensor, once contravariant and three times covariant such that

$$\mathcal{R}^{\mu}_{\kappa\rho\varrho} = \Gamma^{\mu}_{\tau\kappa,\rho} - \Gamma^{\mu}_{\rho\kappa,\tau} + \Gamma^{\mu}_{\rho\varrho}\Gamma^{\varrho}_{\tau\kappa} - \Gamma^{\mu}_{\tau\varrho}\Gamma^{\varrho}_{\rho\kappa},$$

with $1 \leq \kappa, \rho, \varrho, \mu \leq 2$ and $\Gamma^{\theta}_{\lambda\eta}$ are the Christoffel symbols (see for instance [?, ?]). For the sake of conciseness, we have used the notation $q : \nabla u = (q \cdot \nabla u_1, q \cdot \nabla u_2, q \cdot \nabla u_3)$ and $q_T : \nabla_T u = (q_T \cdot \nabla_T u_1, q_T \cdot \nabla_T u_2, q_T \cdot \nabla_T u_3)$, where q_T is the tangential component of q and $\operatorname{\mathbf{div}}_T q_T$ is the tangential divergence of q_T .

- Komornik V. Exact Controllability and Stabilization: The Multiplier Method. RAM 36, Masson, Paris, 1994.
- Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. — Springer-Verlag, 1983, 279 p.
- Wentzell A. D. On boundary conditions for multi-dimensional diffusion processes. Theor. Probab. Appl, 1959, 4, 164–177.