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We consider a parabolic/hyperbolic coupled system of two partial differential equations
(PDEs), which features a suitable boundary and internal dissipation term. The system consists
of the elasticity equation and the heat equation in a bounded domain Ω. We proved the
exponential decay result with an estimation of the decay rates. Our result is established using
the multiplier method [1].

let Ω be a bounded domain of R3 with a boundary Γ = ∂Ω of class C3 such that Γ = Γ0∪Γ1.
The model is given by:

u′′ − divσ(u) + ξ∇θ + a(x)u′ = 0, in Q = Ω×]0,∞[,

θ′ −∆θ + βdivu′ = 0, in Q,
θ = 0, in Q,

(1)

Our notations in (1) are standard:u′ = ∂u
∂t
, u′′ = ∂2u

∂t2
, u(x, t) ∈ R3 denote the displacement vector

at x = (x1, x2, x3) ∈ Ω and t is the time variable and θ = θ(x, t) represent the temperature.
σ(u) = (σij(u))3

i,j=1 is the stress tensor given by σ(u) = 2αε(u) +λdiv(u)I3, where λ and α are
the Lamé coefficients, I3 is the identity matrix of R3 and ε(u) = 1

2
(∇u+ (∇u)T ) = [εij(u)]3i,j=1

is a 3× 3 symmetric matrix. From now on, a summation convention with respect to repeated
indexes will be use. Also, in system (1) a(x) ∈ L∞ is a nonnegative coefficient of the damping
term such that a(x) ≥ a0 ≥ 0, the coupling parameters ξ and β are supposed to be positive
and ρ, η are positive constants.

We complement system (1) with initial conditions

u(., 0) = u0, u
′(., 0) = u1, θ(., 0) = θ0, in Ω, (2)

and Wentzell boundary conditions (see [3]){
u′′T + σS(u)− c2divTσ0

T (u) + l(x)uT + bu′T = 0, on Σ,
u′′ν + σν(u) + σ0

T (u) : ∂mν + l(x)uν + bu′ν = 0, on Σ,
(3)

where a = a(x) and b = b(x) be two nonnegative functions belongs to C1(Γ), σ0
T (u) : ∂mν =

tr(σ0
T (u) · ∂mν), with

σ0
T (u) = 2αε0

T (u) +
2λα

λ+ 2α
tr(ε0

T (u))I2,

and “tr” means the trace of a matrix. As usual ν = ν(x) denotes the unit normal vector at
x ∈ Γ pointing the exterior of Ω.

We have the following existence and uniqueness result (see [2]):

Theorem 1. The problem (1 − 2 − 3) is well posed in the space H. In particular: for
all (u0, u1, θ0, u1|Γ) ∈ D(A), the problem (1) has a unique (strong) solution which satisfies
(u, u′, θ, u′|Γ) ∈ W 1,∞(R+,H) ∩ L∞(R+, D(A)). Moreover, for all (u0, u1, θ0, u1|Γ) ∈ H, the
problem (1− 2− 3) has a unique (weak) solution satisfying (u, u′, θ, u′|Γ) ∈ C(R+,H).
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The main result of this work is the following theorem

Theorem 2. Let (u, θ) be the weak solution of the coupled system (1 − 2 − 3), then there
exist two positive constants M and ω such that

E(t) ≤ E(0)e1−ωt.

We begin by proving the following Lemma.

Lemma 1. Suppose q = (q1, q2, q3) is a smooth vector field on Ω of class W 1,∞(Ω)3. Then,
for every strong solution (u, θ) of (1) we have the following identity:

0 = −

∫
Ω

2
(
q : ∇u

)︸ ︷︷ ︸
M(u)

·u′dx


T

0

+

∫
QT

divq
(
σ(u) : ε(u)− |u′|2

)
dxdt

− 2

∫
QT

σ(u) · (∇q · ∇u) dxdt− ξ
∫
QT

∇θ ·M(u) dxdt−
∫
QT

l(x)u′ ·M(u) dxdt

+

∫
ΣT

divT qT (σ0
T (u) : ε0

T (u))dΓdt+

∫
ΣT

q · ν
(
|u′|2 + α|∂νuT |2 + (2α + λ)|∂νuν |2

)
dΓdt

−
∫

ΣT

q · ν[2αε0
T (u) + λtr(ε0

T (u)i2)] : ε0
T (u)dΓdt−

∫
ΣT

q · ν(α|∂Tuν − (∂Tν)uT |2)dΓdt

− 2

∫
ΣT

σ0
T (u) : (π∂TuTπ + uν∂Tν)(π∂T qTπ)dΓdt− 2

∫
ΣT

∂Tuν(σ
0
T (u)(∂Tν)qT )dΓdt

+ 2

∫
ΣT

(σ0
T (u) : ∂Tν)uT (∂Tν)qTdΓdt− 2

∫
ΣT

(R : σ0
T (u)) : (uT ⊗ qT )dΓdt

− 2

∫
ΣT

(auT + bu′)(π∂TuTπ + uν∂Tν)qTdΓdt− 2

∫
ΣT

(auν + bu′)(∂Tuν − uT∂Tν)qTdΓdt,

where QT = [0, T ]×Ω, ΣT = [0, T ]×Γ, R is the curvature tensor, once contravariant and three
times covariant such that

Rµ
κρ% = Γµτκ,ρ − Γµρκ,τ + Γµρ%Γ

%
τκ − Γµτ%Γ

%
ρκ,

with 1 ≤ κ, ρ, %, µ ≤ 2 and Γθλη are the Christoffel symbols (see for instance [?, ?]). For the

sake of conciseness, we have used the notation q : ∇u =
(
q · ∇u1, q · ∇u2, q · ∇u3

)
and

qT : ∇Tu =
(
qT · ∇Tu1, qT · ∇Tu2, qT · ∇Tu3

)
, where qT is the tangential component of q and

divT qT is the tangential divergence of qT .
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