DECAY OF SOLUTIONS OF A COUPLED SYSTEM IN A STAR-SHAPED DOMAIN WITH LINEAR BOUNDARY AND INTERNAL FEEDBACKS

H. Kasri ${ }^{1}$
${ }^{1}$ University of science and technology houari boumediene, El Alia Babezzouar, Algiers, Algeria
> h.kasri@hotmail.com, hkasri@usthb.dz

We consider a parabolic/hyperbolic coupled system of two partial differential equations (PDEs), which features a suitable boundary and internal dissipation term. The system consists of the elasticity equation and the heat equation in a bounded domain Ω. We proved the exponential decay result with an estimation of the decay rates. Our result is established using the multiplier method [1].
let Ω be a bounded domain of \mathbb{R}^{3} with a boundary $\Gamma=\partial \Omega$ of class C^{3} such that $\Gamma=\Gamma_{0} \cup \Gamma_{1}$. The model is given by:

$$
\begin{cases}u^{\prime \prime}-\operatorname{div} \sigma(u)+\xi \nabla \theta+a(x) u^{\prime}=0, & \text { in } Q=\Omega \times] 0, \infty[\tag{1}\\ \theta^{\prime}-\Delta \theta+\beta \operatorname{div} u^{\prime}=0, & \text { in } \mathrm{Q}, \\ \theta=0, & \text { in } \mathrm{Q},\end{cases}
$$

Our notations in (1) are standard: $u^{\prime}=\frac{\partial u}{\partial t}, u^{\prime \prime}=\frac{\partial^{2} u}{\partial t^{2}}, u(x, t) \in \mathbb{R}^{3}$ denote the displacement vector at $x=\left(x_{1}, x_{2}, x_{3}\right) \in \Omega$ and t is the time variable and $\theta=\theta(x, t)$ represent the temperature. $\sigma(u)=\left(\sigma_{i j}(u)\right)_{i, j=1}^{3}$ is the stress tensor given by $\sigma(u)=2 \alpha \varepsilon(u)+\lambda \operatorname{div}(u) I_{3}$, where λ and α are the Lamé coefficients, I_{3} is the identity matrix of \mathbb{R}^{3} and $\varepsilon(u)=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right)=\left[\varepsilon_{i j}(u)\right]_{i, j=1}^{3}$ is a 3×3 symmetric matrix. From now on, a summation convention with respect to repeated indexes will be use. Also, in system (1) $a(x) \in L^{\infty}$ is a nonnegative coefficient of the damping term such that $a(x) \geq a_{0} \geq 0$, the coupling parameters ξ and β are supposed to be positive and ρ, η are positive constants.

We complement system (1) with initial conditions

$$
\begin{equation*}
u(., 0)=u_{0}, u^{\prime}(., 0)=u_{1}, \theta(., 0)=\theta_{0}, \text { in } \Omega \tag{2}
\end{equation*}
$$

and Wentzell boundary conditions (see [3])

$$
\begin{cases}u_{T}^{\prime \prime}+\sigma_{S}(u)-c^{2} \overline{\operatorname{div}_{T} \sigma_{T}^{0}(u)}+l(x) u_{T}+b u_{T}^{\prime}=0, & \text { on } \Sigma, \tag{3}\\ u_{\nu}^{\prime \prime}+\sigma_{\nu}(u)+\sigma_{T}^{0}(u): \partial_{m} \nu+l(x) u_{\nu}+b u_{\nu}^{\prime}=0, & \text { on } \Sigma,\end{cases}
$$

where $a=a(x)$ and $b=b(x)$ be two nonnegative functions belongs to $C^{1}(\Gamma), \sigma_{T}^{0}(u): \partial_{m} \nu=$ $\operatorname{tr}\left(\sigma_{T}^{0}(u) \cdot \partial_{m} \nu\right)$, with

$$
\sigma_{T}^{0}(u)=2 \alpha \varepsilon_{T}^{0}(u)+\frac{2 \lambda \alpha}{\lambda+2 \alpha} \operatorname{tr}\left(\varepsilon_{T}^{0}(u)\right) I_{2}
$$

and "tr" means the trace of a matrix. As usual $\nu=\nu(x)$ denotes the unit normal vector at $x \in \Gamma$ pointing the exterior of Ω.

We have the following existence and uniqueness result (see [2]):
Theorem 1. The problem $(1-2-3)$ is well posed in the space \mathcal{H}. In particular: for all $\left(u_{0}, u_{1}, \theta_{0}, u_{\left.\right|_{\Gamma}}\right) \in D(\mathcal{A})$, the problem (1) has a unique (strong) solution which satisfies $\left(u, u^{\prime}, \theta,\left.u^{\prime}\right|_{\Gamma}\right) \in W^{1, \infty}\left(\mathbb{R}_{+}, \mathcal{H}\right) \cap L^{\infty}\left(\mathbb{R}_{+}, D(\mathcal{A})\right)$. Moreover, for all $\left(u_{0}, u_{1}, \theta_{0}, u_{\left.1\right|_{\Gamma}}\right) \in \mathcal{H}$, the problem $(1-2-3)$ has a unique (weak) solution satisfying $\left(u, u^{\prime}, \theta,\left.u^{\prime}\right|_{\Gamma}\right) \in \mathcal{C}\left(\mathbb{R}_{+}, \mathcal{H}\right)$.

The main result of this work is the following theorem
Theorem 2. Let (u, θ) be the weak solution of the coupled system $(1-2-3)$, then there exist two positive constants M and ω such that

$$
\mathcal{E}(t) \leq \mathcal{E}(0) e^{1-\omega t}
$$

We begin by proving the following Lemma.
Lemma 1. Suppose $q=\left(q_{1}, q_{2}, q_{3}\right)$ is a smooth vector field on Ω of class $W^{1, \infty}(\bar{\Omega})^{3}$. Then, for every strong solution (u, θ) of (1) we have the following identity:

$$
\begin{aligned}
0 & =-[\int_{\Omega} \underbrace{2(q: \nabla u)}_{M(u)} \cdot u^{\prime} d x]_{0}^{T}+\int_{Q_{T}} \operatorname{div} q\left(\sigma(u): \varepsilon(u)-\left|u^{\prime}\right|^{2}\right) d x d t \\
& -2 \int_{Q_{T}} \sigma(u) \cdot(\nabla q \cdot \nabla u) d x d t-\xi \int_{Q_{T}} \nabla \theta \cdot M(u) d x d t-\int_{Q_{T}} l(x) u^{\prime} \cdot M(u) d x d t \\
& +\int_{\Sigma_{T}} \operatorname{div}_{T} q_{T}\left(\sigma_{T}^{0}(u): \varepsilon_{T}^{0}(u)\right) d \Gamma d t+\int_{\Sigma_{T}} q \cdot \nu\left(\left|u^{\prime}\right|^{2}+\alpha\left|\partial_{\nu} u_{T}\right|^{2}+(2 \alpha+\lambda)\left|\partial_{\nu} u_{\nu}\right|^{2}\right) d \Gamma d t \\
& -\int_{\Sigma_{T}} q \cdot \nu\left[2 \alpha \varepsilon_{T}^{0}(u)+\lambda \operatorname{tr}\left(\varepsilon_{T}^{0}(u) i_{2}\right)\right]: \varepsilon_{T}^{0}(u) d \Gamma d t-\int_{\Sigma_{T}} q \cdot \nu\left(\alpha\left|\overline{\partial_{T} u_{\nu}}-\left(\partial_{T} \nu\right) u_{T}\right|^{2}\right) d \Gamma d t \\
& -2 \int_{\Sigma_{T}} \sigma_{T}^{0}(u):\left(\pi \partial_{T} u_{T} \pi+u_{\nu} \partial_{T} \nu\right)\left(\pi \partial_{T} q_{T} \pi\right) d \Gamma d t-2 \int_{\Sigma_{T}} \partial_{T} u_{\nu}\left(\sigma_{T}^{0}(u)\left(\partial_{T} \nu\right) q_{T}\right) d \Gamma d t \\
& +2 \int_{\Sigma_{T}}\left(\sigma_{T}^{0}(u): \partial_{T} \nu\right) \overline{u_{T}}\left(\partial_{T} \nu\right) q_{T} d \Gamma d t-2 \int_{\Sigma_{T}}\left(\mathcal{R}: \sigma_{T}^{0}(u)\right):\left(u_{T} \otimes q_{T}\right) d \Gamma d t \\
& -2 \int_{\Sigma_{T}}\left(a u_{T}+b u^{\prime}\right)\left(\pi \partial_{T} u_{T} \pi+u_{\nu} \partial_{T} \nu\right) q_{T} d \Gamma d t-2 \int_{\Sigma_{T}}\left(a u_{\nu}+b u^{\prime}\right)\left(\partial_{T} u_{\nu}-\overline{u_{T}} \partial_{T} \nu\right) q_{T} d \Gamma d t
\end{aligned}
$$

where $Q_{T}=[0, T] \times \Omega, \Sigma_{T}=[0, T] \times \Gamma, \mathcal{R}$ is the curvature tensor, once contravariant and three times covariant such that

$$
\mathcal{R}_{\kappa \rho \varrho}^{\mu}=\Gamma_{\tau \kappa, \rho}^{\mu}-\Gamma_{\rho \kappa, \tau}^{\mu}+\Gamma_{\rho \varrho}^{\mu} \Gamma_{\tau \kappa}^{\varrho}-\Gamma_{\tau \varrho}^{\mu} \Gamma_{\rho \kappa}^{\varrho},
$$

with $1 \leq \kappa, \rho, \varrho, \mu \leq 2$ and $\Gamma_{\lambda \eta}^{\theta}$ are the Christoffel symbols (see for instance [?, ?]). For the sake of conciseness, we have used the notation $q: \nabla u=\left(q \cdot \nabla u_{1}, q \cdot \nabla u_{2}, q \cdot \nabla u_{3}\right)$ and $q_{T}: \nabla_{T} u=\left(q_{T} \cdot \nabla_{T} u_{1}, q_{T} \cdot \nabla_{T} u_{2}, q_{T} \cdot \nabla_{T} u_{3}\right)$, where q_{T} is the tangential component of q and $\operatorname{div}_{T} q_{T}$ is the tangential divergence of q_{T}.

1. Komornik V. Exact Controllability and Stabilization: The Multiplier Method. - RAM 36, Masson, Paris, 1994.
2. Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. - Springer-Verlag, 1983, 279 p.
3. Wentzell A. D. On boundary conditions for multi-dimensional diffusion processes. Theor. Probab. Appl, 1959, 4, 164-177.
