VARIATIONAL ANALYSIS OF AN ELECTRO-VISCOPLASTIC CONTACT PROBLEM

Chahira Guenoune¹, Aziza Bachmar²

¹Department of mathematics, University of setif 1, Algeria ²Department of mathematics, University of setif 1, Algeria guenounechahira@gmail.com, aziza.bachmar@univ-setif.dz

In this work, we consider a dynamic process of frictional contact bilateral between a deformable body and an obstacle (see [2]). The material obeys an thermo-viscoplastic constitutive law. We derive a variational formulation of the problem which includes a variational second order evolution inequality. We establish the existence of a unique weak solution of the problem. The idea is to reduce the second order evolution nonlinear inequality of the system to first order evolution inequality (see [3,4]).

We consider a mathematical model of a contact problem in electro-viscoplastic (see [1])

$$\sigma(t) = \mathcal{A}(\varepsilon(\dot{u}(t))) + \mathcal{B}(\varepsilon(u(t)), \beta(t)) + \int_0^t \mathcal{G}(\sigma(s) - \mathcal{A}(\varepsilon(\dot{u}(s))), \varepsilon(u(s))) \, ds - \xi^* E(\varphi) \,,$$
$$D = BE(\varphi) + \xi \varepsilon(u) \,, \text{in } \Omega \times [0, T] \,,$$

Where $u : \Omega \times [0,T] \to \mathbb{R}^d$ is a displacement field, $\sigma : \Omega \times [0,T] \to \mathbb{S}^d$ is a stress field $\varphi : \Omega \times [0,T] \to \mathbb{R}$ is the an electric potential field, $D : \Omega \times [0,T] \to \mathbb{R}^d$ is the an electric displacement field

The body is in contact with an obstacle. The contact is frictional and bilateral with a moving rigid foundation.

$$\begin{cases} \sigma_{\nu} = -\alpha \left| \dot{u}_{\nu} \right|, \ \left| \sigma_{\tau} \right| = -\mu \sigma_{\nu}, \\ \sigma_{\tau} = -\lambda \left(\dot{u}_{\tau} - v^* \right), \ \lambda \ge 0, \text{ on } \Gamma_3 \times [0, T], \end{cases}$$

We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem.

$$\begin{aligned} & (\ddot{u}(t), w - \dot{u}(t))_{V' \times V} + (\sigma(t), \epsilon(w - \dot{u}(t)))_{\mathcal{H}} + \\ & j(\dot{u}(t), w) - j(\dot{u}, \dot{u}(t)) + \phi(\dot{u}, w) - \\ & \phi(\dot{u}, \dot{u}(t)) \ge (f(t), w - \dot{u}(t)), \forall u, w \in V, \\ & (D(t), \nabla \varphi)_{\mathbb{L}^2(\Omega)^d} + (q(t), \varphi)_W = 0, \text{ for all } \varphi \in W \end{aligned}$$

The proof is based on a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments.

Our main results on existence and uniqueness which state the unique weak solvability.

Theorem 1. The Problem PV has a unique solution (u, σ, φ, D) which satisfies

$$u \in C^{1}(0,T,H) \cap W^{1,2}(0,T,V) \cap W^{2,2}(0,T,V')$$
(1)

$$\sigma \in \mathbb{L}^2(0.T, \mathcal{H}_1), Div\sigma \in \mathbb{L}^2(0.T, V')$$
(2)

$$\varphi \in W^{1,2}(0,T,W) \tag{3}$$

$$D \in W^{1,2}(0,T,\mathcal{W}_1) \tag{4}$$

http://www.imath.kiev.ua/~young/youngconf2023

- Bachmar A., Boutechebak S., Serrar T. Variational Analysis of a Dynamic Electroviscoelastic Problem with Friction. J. Sib. Fed. Univ. Math&Phy., 2019, 12, 1, 1–11.
- 2. Boukaroura I., Djabi S. A Dynamic Tresca's Frictional contact problem with damage for thermo elastic-viscoplastic bodies. Stud. Univ. Babes-Bolyai Math., 2019, 64, No. 3, 433–449.
- 3. Duvaut G., Lions J. L. Inequalities in Mechanics and Physics. Berlin: Springer-Verlag Berlin Heidelberg, 1976, XVI, 400.
- 4. Mindlin R. D., Elasticity piezoelectricity and crystal lattice dynamics, J. of Elasticity, 1972, 2, 217–282.