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Let Ω be a bounded Euclidean domain of dimension n ≥ 2 and with boundary Γ of class C∞.
Choose integers l ≥ 1, λ ≥ 0, m1, . . . ,ml+λ ≤ 2l−1, and r1, . . . , rλ if λ ≥ 1. Consider an elliptic
boundary-value problem of the form

Au = f in Ω, Bju+
∑λ

k=1
Cj,kvk = gj on Γ, j = 1, ..., l + λ.

Here, A is a linear partial differential operator (PDO) on Ω = Ω ∪ Γ with ordA = 2l; every
Bj is a boundary PDO on Γ with ordBj ≤ mj, and each Cj,k is a tangent PDO on Γ with
ordCj,k ≤ mj+rk. All coefficients of these PDOs are infinitely smooth complex-valued functions
on Ω and Γ, resp. Assume that max{m1, . . . ,ml+λ} ≥ −rk whenever 1 ≤ k ≤ λ.

Let N denote the linear space of all solutions (u, v1, ..., vλ) ∈ C∞(Ω)× (C∞(Γ))λ to problem
() in which f = 0 on Ω and all gj = 0 on Γ. Let N+ stand for the linear space of all solutions
(w, h1, ..., hl+λ) ∈ C∞(Ω)× (C∞(Γ))l+λ to the formally adjoint problem in which all right-hand
sides are zeros. The spaces N and N+ are finite dimensional; put α := dimN − dimN+.

We study the solvability of the elliptic problem () in the complex Besov spaces Bs
p,q and

Triebel–Lizorkin spaces F s
p,q of order s ≤ 2l− 1 + 1/p, with p, q ∈ (1,∞). Let Es

p,q mean either
Bs
p,q or F s

p,q. If s ≥ 0, then Es
p,q(Ω) is the restriction of Es

p,q(Rn) to Ω; if s < 0, then Es
p,q(Ω) is

the dual of the closure of C∞0 (Ω) in E−sp′,q′(Ω), with 1/p+ 1/p′ = 1/q + 1/q′ = 1. Put

Es
p,q(A,Ω) :=

{
u ∈ Es

p,q(Ω) : Au ∈ E−1+1/p
p,q (Ω)

}
,

‖u,Es
p,q(A,Ω)‖ := ‖u,Es

p,q(Ω)‖+ ‖Au,E−1+1/p
p,q (Ω)‖.

The space Es
p,q(A,Ω) is Banach, and C∞(Ω) is dense in it.

Theorem 1. Let s ≤ 2l − 1 + 1/p. Then the mapping

Λ : (u, v1, . . . , vλ) 7→ (f, g1, . . . , gl+λ), where u ∈ C∞(Ω) and v1, . . . , vλ ∈ C∞(Γ), (1)

extends uniquely (by continuity) to bounded linear operators

Λ : Bs
p,q(A,Ω)⊕

⊕λ

k=1
Bs+rk−1/p
p,q (Γ)→ B−1+1/p

p,q (Ω)⊕
⊕l+λ

j=1
Bs−mj−1/p
p,q (Γ),

Λ : F s
p,q(A,Ω)⊕

⊕λ

k=1
Bs+rk−1/p
p,p (Γ)→ F−1+1/p

p,q (Ω)⊕
⊕l+λ

j=1
Bs−mj−1/p
p,p (Γ). (2)

These operators are Fredholm with kernel N and index α. The range of each of these operators
consists of all vectors (f, g1, . . . , gl+λ) that belong to the target space and satisfy

(f, w)Ω +
∑l+λ

j=1
(gj, hj)Γ = 0 for all (w, h1, . . . , hl+λ) ∈ N+. (3)

Here, (·, ·)Ω and (·, ·)Γ are extensions of the inner products in L2(Ω) and L2(Γ) by continuity.
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A similar result holds true for the Nikolskii space Bs
p,∞ [1].

Given 0 < % ∈ C∞(Ω), we introduce the following weighted Banach spaces:

%Es
p,q(Ω) :=

{
%w : w ∈ Es

p,q(Ω)
}
, ‖f, %Es

p,q(Ω)‖ := ‖%−1f, Es
p,q(Ω)‖,

Es
p,q(A, %,Ω) :=

{
u ∈ Es

p,q(Ω) : Au ∈ %Es−2l
p,q (Ω)

}
,

‖u,Es
p,q(A, %,Ω)‖ := ‖u,Es

p,q(Ω)‖+ ‖Au, %Es−2l
p,q (Ω)‖.

Let ∂ν denote the differentiation operator along the inner normal to the boundary of Ω.

Theorem 2. Let s < 2l − 1 + 1/p. Suppose that a positive function % ∈ C∞(Ω) is a
(pointwise) multiplier on B2l−s

p′,q′ (Ω) or F 2l−s
p′,q′ (Ω) and satisfies

∂jν% = 0 on Γ whenever j ∈ Z and 0 6 j < 2l − s− 1 + 1/p. (4)

Then mapping (1) where Au ∈ %Bs−2l
p,q (Ω) or Au ∈ %F s−2l

p,q (Ω) extends uniquely (by continuity)
to bounded linear operators

Λ : Bs
p,q(A, %,Ω)⊕

⊕λ

k=1
Bs+rk−1/p
p,q (Γ)→ %Bs−2l

p,q (Ω)⊕
⊕l+λ

j=1
Bs−mj−1/p
p,q (Γ),

Λ : F s
p,q(A, %,Ω)⊕

⊕λ

k=1
Bs+rk−1/p
p,p (Γ)→ %F s−2l

p,q (Ω)⊕
⊕l+λ

j=1
Bs−mj−1/p
p,p (Γ), (5)

resp. These operators are Fredholm with kernel N and index α. The range of each of these
operators consists of all vectors (f, g1, . . . , gl+λ) that belong to the target space and satisfy (3).

The following result gives an example of the above weight function %.

Theorem 3. Let s < 2l−1+1/p, and let a positive function %1 ∈ C∞(Ω) equal the distance
to Γ in a neighbourhood of Γ. Assume that δ ≥ 2l−s−1+1/p ∈ Z or that δ > 2l−s−1+1/p /∈ Z.
Then the function % := %δ1 satisfies the hypotheses of Theorem 2.

In (2) and (5), the spaces over Γ are independent of q in contrast to the spaces over Ω. This
suggests that the set of all u ∈ F s

p,q(Ω) such that Au satisfies a relevant condition does not
depend on q. The following two theorems give such conditions. Let p, q, r ∈ (1,∞).

Theorem 4. Let s ≤ 2l − 1 + 1/p, and suppose that a Banach space Q is continuously
embedded in F−1+1/p

p,min{q,r}(Ω). Then{
u ∈ F s

p,q(Ω) : Au ∈ Q
}

=
{
u ∈ F s

p,r(Ω) : Au ∈ Q
}
, (6)

‖u, F s
p,q(Ω)‖+ ‖Au,Q‖ � ‖u, F s

p,r(Ω)‖+ ‖Au,Q‖. (7)

As usual, � means equivalence of norms.

Theorem 5. Let s < 2l−1+1/p. Suppose that a positive function % ∈ C∞(Ω) is a multiplier
on the space F 2l−s

p′,q′ (Ω) and satisfies (4). Suppose also that a positive function µ ∈ C∞(Ω) is a
multiplier on F 2l−s

p′,r′ (Ω), where 1/r+ 1/r′ = 1, and satisfies condition (4) in which % is replaced
with µ. Let a Banach space Q be continuously embedded in %F s−2l

p,q (Ω) and µF s−2l
p,r (Ω). Then

(6) and (7) hold true.

These results were obtained together with A.A. Murach in [2].
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