ON ELLIPTIC BOUNDARY-VALUE PROBLEMS IN FUNCTION SPACES OF LOW REGULARITY

I.S. Chepurukhina

Institute of Mathematics, Kyiv, Ukraine chepurukhina@gmail.com

Let Ω be a bounded Euclidean domain of dimension $n \geq 2$ and with boundary Γ of class C^{∞} . Choose integers $l \geq 1, \lambda \geq 0, m_1, \ldots, m_{l+\lambda} \leq 2l-1$, and r_1, \ldots, r_{λ} if $\lambda \geq 1$. Consider an elliptic boundary-value problem of the form

$$Au = f$$
 in Ω , $B_j u + \sum_{k=1}^{\lambda} C_{j,k} v_k = g_j$ on Γ , $j = 1, ..., l + \lambda$.

Here, A is a linear partial differential operator (PDO) on $\overline{\Omega} = \Omega \cup \Gamma$ with ord A = 2l; every B_j is a boundary PDO on Γ with ord $B_j \leq m_j$, and each $C_{j,k}$ is a tangent PDO on Γ with ord $C_{j,k} \leq m_j + r_k$. All coefficients of these PDOs are infinitely smooth complex-valued functions on $\overline{\Omega}$ and Γ , resp. Assume that $\max\{m_1, \ldots, m_{l+\lambda}\} \geq -r_k$ whenever $1 \leq k \leq \lambda$.

Let N denote the linear space of all solutions $(u, v_1, ..., v_\lambda) \in C^{\infty}(\overline{\Omega}) \times (\overline{C^{\infty}}(\Gamma))^{\lambda}$ to problem () in which f = 0 on Ω and all $g_j = 0$ on Γ . Let N^+ stand for the linear space of all solutions $(w, h_1, ..., h_{l+\lambda}) \in C^{\infty}(\overline{\Omega}) \times (C^{\infty}(\Gamma))^{l+\lambda}$ to the formally adjoint problem in which all right-hand sides are zeros. The spaces N and N^+ are finite dimensional; put $\alpha := \dim N - \dim N^+$.

We study the solvability of the elliptic problem () in the complex Besov spaces $B_{p,q}^s$ and Triebel–Lizorkin spaces $F_{p,q}^s$ of order $s \leq 2l - 1 + 1/p$, with $p, q \in (1, \infty)$. Let $E_{p,q}^s$ mean either $B_{p,q}^s$ or $F_{p,q}^s$. If $s \geq 0$, then $E_{p,q}^s(\Omega)$ is the restriction of $E_{p,q}^s(\mathbb{R}^n)$ to Ω ; if s < 0, then $E_{p,q}^s(\Omega)$ is the dual of the closure of $C_0^{\infty}(\Omega)$ in $E_{p',q'}^{-s}(\Omega)$, with 1/p + 1/p' = 1/q + 1/q' = 1. Put

$$E_{p,q}^{s}(A,\Omega) := \left\{ u \in E_{p,q}^{s}(\Omega) : Au \in E_{p,q}^{-1+1/p}(\Omega) \right\},\$$
$$|u, E_{p,q}^{s}(A,\Omega)\| := \|u, E_{p,q}^{s}(\Omega)\| + \|Au, E_{p,q}^{-1+1/p}(\Omega)\|.$$

The space $E^s_{p,q}(A,\Omega)$ is Banach, and $C^{\infty}(\overline{\Omega})$ is dense in it.

Theorem 1. Let $s \leq 2l - 1 + 1/p$. Then the mapping

$$\Lambda: (u, v_1, \dots, v_{\lambda}) \mapsto (f, g_1, \dots, g_{l+\lambda}), \quad where \ u \in C^{\infty}(\overline{\Omega}) \ and \ v_1, \dots, v_{\lambda} \in C^{\infty}(\Gamma),$$
(1)

extends uniquely (by continuity) to bounded linear operators

$$\Lambda: B_{p,q}^{s}(A,\Omega) \oplus \bigoplus_{k=1}^{\lambda} B_{p,q}^{s+r_{k}-1/p}(\Gamma) \to B_{p,q}^{-1+1/p}(\Omega) \oplus \bigoplus_{j=1}^{l+\lambda} B_{p,q}^{s-m_{j}-1/p}(\Gamma),$$

$$\Lambda: F_{p,q}^{s}(A,\Omega) \oplus \bigoplus_{k=1}^{\lambda} B_{p,p}^{s+r_{k}-1/p}(\Gamma) \to F_{p,q}^{-1+1/p}(\Omega) \oplus \bigoplus_{j=1}^{l+\lambda} B_{p,p}^{s-m_{j}-1/p}(\Gamma).$$
(2)

These operators are Fredholm with kernel N and index α . The range of each of these operators consists of all vectors $(f, g_1, \ldots, g_{l+\lambda})$ that belong to the target space and satisfy

$$(f,w)_{\Omega} + \sum_{j=1}^{l+\lambda} (g_j,h_j)_{\Gamma} = 0 \quad \text{for all} \quad (w,h_1,\ldots,h_{l+\lambda}) \in N^+.$$
(3)

Here, $(\cdot, \cdot)_{\Omega}$ and $(\cdot, \cdot)_{\Gamma}$ are extensions of the inner products in $L_2(\Omega)$ and $L_2(\Gamma)$ by continuity.

http://www.imath.kiev.ua/~young/youngconf2023

A similar result holds true for the Nikolskii space $B_{p,\infty}^s$ [1]. Given $0 < \rho \in C^{\infty}(\Omega)$, we introduce the following weighted Banach spaces:

$$\begin{split} \varrho E^{s}_{p,q}(\Omega) &:= \left\{ \varrho w : w \in E^{s}_{p,q}(\Omega) \right\}, \quad \|f, \varrho E^{s}_{p,q}(\Omega)\| := \|\varrho^{-1}f, E^{s}_{p,q}(\Omega)\|, \\ E^{s}_{p,q}(A, \varrho, \Omega) &:= \left\{ u \in E^{s}_{p,q}(\Omega) : Au \in \varrho E^{s-2l}_{p,q}(\Omega) \right\}, \\ \|u, E^{s}_{p,q}(A, \varrho, \Omega)\| &:= \|u, E^{s}_{p,q}(\Omega)\| + \|Au, \varrho E^{s-2l}_{p,q}(\Omega)\|. \end{split}$$

Let ∂_{ν} denote the differentiation operator along the inner normal to the boundary of Ω .

Theorem 2. Let s < 2l - 1 + 1/p. Suppose that a positive function $\rho \in C^{\infty}(\Omega)$ is a (pointwise) multiplier on $B^{2l-s}_{p',q'}(\Omega)$ or $F^{2l-s}_{p',q'}(\Omega)$ and satisfies

$$\partial^j_{\nu} \varrho = 0 \quad on \quad \Gamma \quad whenever \quad j \in \mathbb{Z} \quad and \quad 0 \leq j < 2l - s - 1 + 1/p.$$

$$\tag{4}$$

Then mapping (1) where $Au \in \rho B^{s-2l}_{p,q}(\Omega)$ or $Au \in \rho F^{s-2l}_{p,q}(\Omega)$ extends uniquely (by continuity) to bounded linear operators

$$\Lambda : B_{p,q}^{s}(A,\varrho,\Omega) \oplus \bigoplus_{k=1}^{\lambda} B_{p,q}^{s+r_{k}-1/p}(\Gamma) \to \varrho B_{p,q}^{s-2l}(\Omega) \oplus \bigoplus_{j=1}^{l+\lambda} B_{p,q}^{s-m_{j}-1/p}(\Gamma),$$

$$\Lambda : F_{p,q}^{s}(A,\varrho,\Omega) \oplus \bigoplus_{k=1}^{\lambda} B_{p,p}^{s+r_{k}-1/p}(\Gamma) \to \varrho F_{p,q}^{s-2l}(\Omega) \oplus \bigoplus_{j=1}^{l+\lambda} B_{p,p}^{s-m_{j}-1/p}(\Gamma),$$
(5)

resp. These operators are Fredholm with kernel N and index α . The range of each of these operators consists of all vectors $(f, g_1, \ldots, g_{l+\lambda})$ that belong to the target space and satisfy (3).

The following result gives an example of the above weight function ρ .

Theorem 3. Let s < 2l - 1 + 1/p, and let a positive function $\varrho_1 \in C^{\infty}(\Omega)$ equal the distance to Γ in a neighbourhood of Γ . Assume that $\delta \geq 2l - s - 1 + 1/p \in \mathbb{Z}$ or that $\delta > 2l - s - 1 + 1/p \notin \mathbb{Z}$. Then the function $\varrho := \varrho_1^{\delta}$ satisfies the hypotheses of Theorem 2.

In (2) and (5), the spaces over Γ are independent of q in contrast to the spaces over Ω . This suggests that the set of all $u \in F_{p,q}^s(\Omega)$ such that Au satisfies a relevant condition does not depend on q. The following two theorems give such conditions. Let $p, q, r \in (1, \infty)$.

Theorem 4. Let $s \leq 2l - 1 + 1/p$, and suppose that a Banach space Q is continuously embedded in $F_{p,\min\{q,r\}}^{-1+1/p}(\Omega)$. Then

$$\left\{ u \in F_{p,q}^{s}(\Omega) : Au \in Q \right\} = \left\{ u \in F_{p,r}^{s}(\Omega) : Au \in Q \right\},\tag{6}$$

$$||u, F_{p,q}^{s}(\Omega)|| + ||Au, Q|| \asymp ||u, F_{p,r}^{s}(\Omega)|| + ||Au, Q||.$$
(7)

As usual, \asymp means equivalence of norms.

Theorem 5. Let s < 2l-1+1/p. Suppose that a positive function $\rho \in C^{\infty}(\Omega)$ is a multiplier on the space $F_{p',q'}^{2l-s}(\Omega)$ and satisfies (4). Suppose also that a positive function $\mu \in C^{\infty}(\Omega)$ is a multiplier on $F_{p',r'}^{2l-s}(\Omega)$, where 1/r + 1/r' = 1, and satisfies condition (4) in which ρ is replaced with μ . Let a Banach space Q be continuously embedded in $\rho F_{p,q}^{s-2l}(\Omega)$ and $\mu F_{p,r}^{s-2l}(\Omega)$. Then (6) and (7) hold true.

These results were obtained together with A. A. Murach in [2].

- 1. Murach A. A., Chepurukhina I. S., Elliptic problems with rough boundary data in Nikolskiy spaces. Reports of NAS of Ukraine (*Ukrainian*), 2021, No. 3, 3–10.
- 2. Murach A.A., Chepurukhina I.S., Elliptic problems in Besov and Sobolev–Triebel–Lizorkin spaces of low regularity. Reports of NAS of Ukraine, 2021, No. 6, 3–11.