Elliptic Problem With Nonlinear Singularity

Siham Boukarabila

University of Tlemcen, Tlemcen, Algeria
In this work we show the existence of solution for the following problem:

$$
\left\{\begin{align*}
-\Delta u & =\frac{|\nabla u|^{q}}{|u|^{\alpha}}+\lambda f & & \text { in } \Omega \tag{1}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where $N>2, \Omega \subset \mathbb{R}^{N}$ is a bounded regular domain, $q>2, \alpha<\frac{q}{2}, \lambda>0$ and f is a nonnegative function belonging to a suitable Lebesgue space.
Since $\alpha<\frac{q}{2}$, then problem (1) takes the form

$$
\left\{\begin{align*}
-\Delta u & =\frac{1}{(1-\beta)^{q}}\left|\nabla u^{1-\beta}\right|^{q}+\lambda f & & \text { in } \Omega \tag{2}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where $\beta=\frac{\alpha}{q}<\frac{1}{2}$. Throughout this work, we will consider problem (2) as the main problem to be solved.
In ordre to solve problem (2) we established a Sobolev regularity for $v^{1-\beta}$ for all $\beta<\frac{1}{2}$, by analyzing v that is the unique solution for the Poisson problem below (3) and by using estimations on the Green's function.

$$
\left\{\begin{align*}
-\Delta v=f, & \text { in } \Omega \tag{3}\\
v=0, & \text { in } \partial \Omega
\end{align*}\right.
$$

Green's estimes: We gather, in the next lemma, some familiar estimates on the Green's function G and its gradient $\nabla_{x} G$.

Lemma 1. Let $G(x, y)$ be the Green's Function associated to Ω, then there exist $\mathcal{C}_{1}:=$ $\mathcal{C}_{1}(N, \Omega)>0$ and $\mathcal{C}_{2}:=N$ such that

$$
G(x, y) \leq \mathcal{C}_{1} \min \left\{\frac{1}{|x-y|^{N-2}}, \frac{\delta(x)}{|x-y|^{N-1}}, \frac{\delta(y)}{|x-y|^{N-1}}\right\}, \quad \text { for a.e. } x, y \in \Omega
$$

and

$$
\left|\nabla_{x} G(x, y)\right| \leq \mathcal{C}_{2} G(x, y) \max \left\{\frac{1}{|x-y|}, \frac{1}{\delta(x)}\right\}, \quad \text { for a.e. } x, y \in \Omega
$$

Regularity result:

Theorem 1. Suppose that $f \in L^{m}(\Omega), m \geq 1$ is such that $f \geq 0$ in Ω. Consider u to be the unique solution of the Poisson problem (3). Then for all $\beta \in\left(0, \frac{1}{2}\right)$

$$
u^{1-\beta} \in W_{0}^{1, p}(\Omega), \quad \forall p<\bar{p}(m)
$$

where

$$
\bar{p}(m):= \begin{cases}\frac{m N}{(N-m)(1-\beta)+N m \beta}, & \text { if } m<N \\ \frac{1}{\beta}, & \text { if } m \geq N\end{cases}
$$

http://www.imath.kiev.ua/~young/youngconf2023

Moreover, There exists a positive constant $C=C(N, m, p, \beta, \Omega)$ such that

$$
\left\|u^{1-\beta}\right\|_{W_{0}^{1, p}(\Omega)} \leq C\|f\|_{L^{m}(\Omega)}^{1-\beta}
$$

Existence result:

Theorem 2. Assume that $f \in L^{m}(\Omega), m \geq 1$ is a nonnegative function. Then,

1. If $\frac{N}{2}<m<N$ and $\beta<\frac{2 m-N}{2(N m-N+m)}$, then for all $2<q<\frac{N}{(N-m)(1-\beta)+N m \beta}$, there exists $\lambda^{*}=\lambda^{*}(N, q, m, f, \Omega)>0$ such that, for all $0<\lambda \leq \lambda^{*}$, there exists a weak solution u to the problem (2) such that $u^{1-\beta} \in W_{0}^{1, p}(\Omega)$ for all $1 \leq p<\frac{m N}{(N-m)(1-\beta)+N m \beta}$.
2. If $m \geq N$ and $\beta<\frac{1}{2 N}$, then for all $2<q<\frac{1}{N \beta}$, there exists $\lambda^{*}=\lambda^{*}(N, q, m, f, \Omega)>0$ such that, for all $0<\lambda \leq \lambda^{*}$, there exists a weak solution u to the problem (2) such that $u^{1-\beta} \in W_{0}^{1, p}(\Omega)$ for all $1 \leq p<\frac{1}{\beta}$.

Uniqueness result:

Theorem 3. Assume that $f \in L^{m}(\Omega), m>N$ is a nonnegative function such that $f \geqslant 0$. Suppose that $\beta<\frac{1}{2 N}$ and that $2<q<\frac{1}{N \beta}$. Then problem (1) has at most one positive solution u such that $u^{1-\beta} \in W_{0}^{1, p}(\Omega)$ for all $1 \leq p<\frac{1}{\beta}$.

1. S. Boukarabila, A. Primo, A. Younes. Singular elliptic problem with superquadratic growth in the gradient, Submitted.
2. B. Abdellaoui. Multiplicity Result for Quasilinear Elliptic Problems with General Growth in the Gradient. Journal: Adv. Nonlinear Stud. 8, no. 2, 2008, 289-301.
3. B. Abdellaoui, D. Giachetti, I. Peral and M. Walias. Non-linear elliptic problems with dependence on the gradient and singular on the boundary. Nonlinear Anal. 74, no. 4, 2011, 1355-1371.
4. B. Abdellaoui, D. Giachetti, I. Peral and M. Walias. Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with Hardy-Leray potential. Discrete and Continue Dynamical System-A 34, no.5, 2014, 1747-1774.
5. N.E. Alaa, M. Pierre. Weak solutions of some quasilinear elliptic equations with data measures. SIAM J. Math. Anal. 24, 1993, 23-35.
6. H. Brezis, X. Cabré, Some simple nonlinear PDE's without solution. Boll. Unione. Mat. Ital. Sez. B, 8, 1998, 223-262.
7. Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes. Math. Ann., 312(3), 1998, 465-501.
