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In this work we show the existence of solution for the following problem: −∆u =
|∇u|q

|u|α
+ λf in Ω

u = 0 on ∂Ω
(1)

where N > 2, Ω ⊂ RN is a bounded regular domain, q > 2, α < q
2
, λ > 0 and f is a nonnegative

function belonging to a suitable Lebesgue space.
Since α < q

2
, then problem (1) takes the form{

−∆u = 1
(1−β)q

|∇u1−β|q + λf in Ω

u = 0 on ∂Ω
(2)

where β = α
q
< 1

2
. Throughout this work, we will consider problem (2) as the main problem to

be solved.
In ordre to solve problem (2) we established a Sobolev regularity for v1−β for all β < 1

2
,

by analyzing v that is the unique solution for the Poisson problem below (3) and by using
estimations on the Green’s function.{

−∆v = f, in Ω,

v = 0, in ∂Ω,
(3)

Green’s estimes: We gather, in the next lemma, some familiar estimates on the Green’s
function G and its gradient ∇xG.

Lemma 1. Let G(x, y) be the Green’s Function associated to Ω , then there exist C1 :=
C1(N,Ω) > 0 and C2 := N such that

G(x, y) ≤ C1 min

{
1

|x− y|N−2
,

δ(x)

|x− y|N−1
,

δ(y)

|x− y|N−1

}
, for a.e. x, y ∈ Ω,

and
|∇xG(x, y)| ≤ C2G(x, y) max

{
1

|x− y|
,

1

δ(x)

}
, for a.e. x, y ∈ Ω.

Regularity result:

Theorem 1. Suppose that f ∈ Lm(Ω), m ≥ 1 is such that f  0 in Ω. Consider u to be
the unique solution of the Poisson problem (3). Then for all β ∈ (0, 1

2
)

u1−β ∈ W 1,p
0 (Ω), ∀ p < p̄(m)

where

p̄(m) :=


mN

(N −m)(1− β) +Nmβ
, if m < N,

1

β
, if m ≥ N.
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Moreover, There exists a positive constant C = C(N,m, p, β,Ω) such that∥∥u1−β∥∥
W 1,p

0 (Ω)
≤ C‖f‖1−β

Lm(Ω)

Existence result:

Theorem 2. Assume that f ∈ Lm(Ω),m ≥ 1 is a nonnegative function. Then,

1. If N
2
< m < N and β < 2m−N

2(Nm−N+m)
, then for all 2 < q < N

(N−m)(1−β)+Nmβ
, there exists

λ∗ = λ∗(N, q,m, f,Ω) > 0 such that, for all 0 < λ ≤ λ∗, there exists a weak solution u to
the problem (2) such that u1−β ∈ W 1,p

0 (Ω) for all 1 ≤ p < mN
(N−m)(1−β)+Nmβ

.

2. If m ≥ N and β < 1
2N

, then for all 2 < q < 1
Nβ

, there exists λ∗ = λ∗(N, q,m, f,Ω) > 0

such that, for all 0 < λ ≤ λ∗, there exists a weak solution u to the problem (2) such that
u1−β ∈ W 1,p

0 (Ω) for all 1 ≤ p < 1
β
.

Uniqueness result:

Theorem 3. Assume that f ∈ Lm(Ω),m > N is a nonnegative function such that f  0.
Suppose that β < 1

2N
and that 2 < q < 1

Nβ
. Then problem (1) has at most one positive solution

u such that u1−β ∈ W 1,p
0 (Ω) for all 1 ≤ p < 1

β
.
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