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Nonlinear fractional partial differential equations (PDEs) have been used to model many
phenomena in various fields such as mathematics, physics, and the evolution phenomena in
different scientific areas. The property of the fractional derivative operators plays an especially
crucial role in applied mathematics and physics, (Kilbas et al. 2006 [8], Diethelm 2010 [6]).

Exact solutions of fractional equations are used to mathematically formulate and, thus, aid
in defining the solution of physical and other problems, including functions of several variables
such as the propagation of heat or sound, etc. (see [1-5]).

Several mathematical models are used to describe nonlinear acoustics phenomena [7]. For
example, In this work, we shall give a fractional model of nonlinear acoustics that is named
the space-fractional Jordan-Moore-Gibson-Thompson (JMGT) equation. This equation results
from modeling high-frequency ultra sound waves, and is written for 1 < α ≤ 2 as follows{

τψttt + µψtt − κ2∂αxψ − δ∂αxψt = F (x, t, ψ, ψx, ψtt, ψxx, (ψt)xx) ,

ψ (κt, t) = u0 exp
(
−κ2

δ
t
)
, ψx (κt, t) = (ψt)x (κt, t) = 0,

(1)

with

∂αxψ =

{
∂2
xψ, α = 2,

I2−α
κt ∂2

xψ = 1
Γ(2−α)

∫ x
κt

(x− τ)1−α ∂2

∂τ2
ψ (τ, t) dτ, 1 < α < 2,

where the unknown scalar function ψ = ψ(x, t) of a space and time variables (x, t) ∈ Ω with

Ω = {(x, t) ∈ R× [0, T ] ; κt ≤ x ≤ `} , for T > 0 and ` ≥ κT,

denotes an acoustic velocity, where τ, µ, κ, δ ∈ R∗+, u0 ∈ C, also F : Ω×C×C×C×C×C→ C
is a nonlinear function.

The major goal of this work is to determine the existence and uniqueness for the fractional-
order’s problem of partial differential equation (1), under the traveling wave form

ψ (x, t) = exp

(
−κ

2

δ
t

)
u (x− κt) , with κ, δ ∈ R∗+. (2)

The basic profile u is not known in advance and is to be identified.
For the forthcoming analysis, we impose the following assumptions
(A1) F is a continuous function that is invariant by the change of scale (2). It gives us

F (x, t, ψ, ψx, ψtt, ψxx, (ψt)xx) = exp
(
−κ2

δ
t
)
×

(δκf (η, u, u′, u′′)− κ3τu′′′) ,
(3)

where η = x− κt and f : [0, `]× C× C× C→ C is a continuous function.
(A2) There exist three positive constants β, γ, λ > 0 so that the function f given by (3)

satisfies

|f (η, u, v, w)− f (η, ū, v̄, w̄)| ≤ β |u− ū|+ γ |v − v̄|+ λ |w − w̄| , ∀β, γ, λ > 0,
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for each η ∈ [0, `] , and any u, v, w, ū, v̄, w̄ ∈ C.
(A3) There exist four nonnegative functions a, b, c, d ∈ C ([0, `] ,R+) , such that

|f (η, u, v, w)| ≤ a (η) + b (η) |u|+ c (η) |v|+ d (η) |w| , ∀η ∈ [0, `] ,

for any u, v, w ∈ C and η ∈ [0, `] .
We denote by $ the positive constant defined by

$ = max

{
` (|q|+ γ) + α (|θ|+ λ)

`1−αΓ (α + 1)
,
` (|q|+ c∗) + α (|θ|+ d∗)

`1−αΓ (α + 1)

}
.

Where q = κ2

δ2

(
3τκ2

δ
− 2µ

)
, θ = κ

δ

(
3τκ2

δ
− µ

)
, and

a∗ = sup
η∈[0,`]

a (η) , b∗ = sup
η∈[0,`]

b (η) , c∗ = sup
η∈[0,`]

c (η) , and d∗ = sup
η∈[0,`]

d (η) .

Throughout the rest of this paper, we put p = κ3

δ3

(
τκ2

δ
− µ

)
.

Now, we give the principal theorems of this work.

Theorem 1. Assume that the assumptions (A1)− (A3) hold. If we put $ ∈ (0, 1) and

`α+1

(
κ3

δ3

∣∣∣∣τκ2

δ
− µ

∣∣∣∣+ b∗
)
< Γ (α + 2) (1−$) ,

then, there is at least one solution of the Cauchy problem (1) on Ω in the traveling wave form
(2).

Theorem 2. Assume that the assumptions (A1) , (A2) hold. If we put $ ∈ (0, 1) and

`α+1
(
κ3

δ3

∣∣∣ τκ2δ − µ∣∣∣+ β
)

Γ (α + 2) (1−$)
< 1,

then the Cauchy problem (1) admits a unique solution in the traveling wave form (2) on Ω.
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